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Abstract: Blood pressure (BP) monitoring can be performed either invasively via arterial catheteri-
zation or non-invasively through a cuff sphygmomanometer. However, for conscious individuals,
traditional cuff-based BP monitoring devices are often uncomfortable, intermittent, and impractical
for frequent measurements. Continuous and non-invasive BP (NIBP) monitoring is currently gaining
attention in the human health monitoring area due to its promising potentials in assessing the health
status of an individual, enabled by machine learning (ML), for various purposes such as early predic-
tion of disease and intervention treatment. This review presents the development of a non-invasive
BP measuring tool called sphygmomanometer in brief, summarizes state-of-the-art NIBP sensors,
and identifies extended works on continuous NIBP monitoring using commercial devices. Moreover,
the NIBP predictive techniques including pulse arrival time, pulse transit time, pulse wave velocity,
and ML are elaborated on the basis of bio-signals acquisition from these sensors. Additionally,
the different BP values (systolic BP, diastolic BP, mean arterial pressure) of the various ML models
adopted in several reported studies are compared in terms of the international validation standards
developed by the Advancement of Medical Instrumentation (AAMI) and the British Hypertension
Society (BHS) for clinically-approved BP monitors. Finally, several challenges and possible solutions
for the implementation and realization of continuous NIBP technology are addressed.

Keywords: non-invasive; blood pressure; continuous monitoring; sensors; machine learning

1. Introduction

Outstanding technological capabilities in the present day have contributed significant
impacts to the healthcare sector via continuous monitoring of vital signs such as blood pres-
sure (BP) for home users. These health monitoring tools, such as cuff sphygmomanometers
for measuring BP non-invasively, are extensively used by patients with various health
conditions, such as cardiovascular-related diseases and diabetes, or even by subjects with
no history of ailments.

BP is a measurement of force exerted by the heart against the arteries during the
pumping of blood and it is used by health practitioners to evaluate a patient’s current state
of health. To date, there are two clinical, gold-standard ways of monitoring BP. The first one
is performed invasively in intensive care units (ICUs) or operative ward environments via
arterial catheterization, while the second approach is more flexible because it measures BP
non-invasively and so it is more suitable for clinical or at-home applications using the cuff
sphygmomanometers. In comparison to the invasive way, the non-invasive blood pressure
(NIBP) measurement method shows superior performance in terms of ease of use, low
cost, portability, reproducibility, and simplicity in that it does not require the judgement of
experts to understand the estimated BP.
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For an individual with non-existing conditions, the ideal systolic blood pressure (SBP)
and diastolic blood pressure (DBP) according to the American Heart Association are less
than 120 and 80 mmHg, respectively [1]. Hypertension is diagnosed when the estimated
SBP and DBP values are beyond the considered range, whereas hypotension is diagnosed
when these values are below this range. The World Health Organization (WHO) reported
that about half a billion hypertension patients were never diagnosed despite suffering
from cardiovascular diseases (CVD), and 720 million patients were left untreated from
1990 to 2019 [2]. Although patients undergo frequent medical check-ups, this silent killer
disease is difficult to detect, which results in delayed prognosis and fatality [3]. Several risk
factors of this illness are attributed by hypertension, diabetes, and lipid anomaly [4–9].

The first experimental realization of non-invasive BP monitoring, by von Basch in
1876 [10], used a mercury manometer to measure BP and eliminated artery puncture. Two
decades later, Riva-Rocci reported the first clinically-accepted sphygmomanometer, which
relies on artery compression by a rubber cuff in a circular direction to measure arm pressure
with improved accuracy and less pain [11,12]. This method produces erroneous results
when used to measure SBP because of the narrow cuff width of 5 cm [13], which was thus
later increased to 12 cm [14]. In 1981, Donall Nunn invented the first fully automated
oscillometric cuff BP monitor with high estimation accuracy [15].

Currently, the cuff-based technique possesses few limitations that are still considered
as ongoing roadblocks in clinical medicine for finding suitable alternatives to measure BP
unobtrusively and targeted for general populations. This is because patients often experi-
ence pain and discomfort [11] during BP recording because of the cuff compression, and
this raises the issue of poor cuff fitting on individuals with obesity [16] and neonates [17].
Additionally, the tendency of failure detection for hypertensive patients is high because
the associated participants portray normal BP values during measurement, suggesting the
masking of hypertension [18]. This phenomenon is in contrast to the white-coat effect in
which normotensive subjects are misidentified as hypertensive partly because of anxiety
prior to the measurement session or post-exercise effects [19]. Moreover, this approach
measures BP values intermittently, which does not adequately provide detailed real-time
information on an individual’s state of health. A study found that great BP variation with
valuable information related to CVD detection can be observed during sleep [20]. In addi-
tion, this modality requires a stationary position of the participant during measurement
to avoid motion artifacts introduced by noises, hence producing unwanted signals that
interfere with pulse recording [21]. Other factors, such as the banning of mercury sphyg-
momanometers in United States hospitals due to mercury toxicity in the environment [22],
variation of BP values across individuals because of artery occlusion [23], severe rupture of
skin capillary as a secondary effect of exposure to cuff BP [24], and faint or almost inaudible
Korotkoff sound between systolic and diastolic recording when the cuff deflates for cardiac
arrythmias patients [25], have led to the investigations of a variety of solutions in recent
years to overcome the aforementioned drawbacks of cuff BP monitoring devices.

To the best of our knowledge, the cuffless NIBP sensors are yet to be validated in
a way that can be readily implemented as the gold standard of the NIBP monitoring
model. The alternatives have received considerable critical attention as they are capable of
estimating continuous and accurate BP results with the aid of advanced technology such
as machine learning (ML), and these can be expanded for remote and ambulatory (24 h)
monitoring [26,27] through microcontrollers and gateways with the goal of improving
healthcare quality by helping patients to receive optimal treatment in a timely manner and
personalized health monitoring for everyone.

This review summarizes available state-of-the-art NIBP sensors, as displayed in
Figure 1, and identifies several commercialized NIBP monitoring devices for continu-
ous BP measurements studies. Furthermore, the prediction techniques of continuous BP
monitoring, including pulse arrival time (PAT), pulse transit time (PTT), pulse wave veloc-
ity (PWV), and ML, are elaborated based on acquired bio-signals from these NIBP sensors.
On the basis of several reported studies, the estimated values of SBP, DBP, and mean
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arterial pressure (MAP) from various ML models are compared according to universal
validation protocols for clinically-approved BP monitors. Finally, the challenges in this
field and possible improvements for future works are addressed in this paper to ensure the
implementation and acceptance of this emerging technology in today’s world.
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Figure 1. Overview of the current NIBP sensors.

2. Sensors for NIBP Monitoring

NIBP sensors offer continuous monitoring of BP, which is an important biomarker in
assessing individual state of health in real time. In this section, the various NIBP sensors
based on optical, electrical, pressure, and ultrasound principles are reviewed.

2.1. Photoplethysmogram

Glenn Allan Milikan devised the first oximeter in 1940 and introduced the term “oxime-
ter” a year later [28]. In 1973, the Czesch physiologist Jan Peňáz introduced the volume
clamp technique, where arterial pulse obtained from a finger is indirectly measured through
vascular unloading [29]. In the 1980s, photoplethysmogram (PPG) proliferation in clinical
applications was observed through the discovery of pulse oximeters for continuous oxygen
saturation (SpO2) monitoring under anesthesia [30]. Recently, there has been widespread
usage of PPG as pulse oximeters, especially by COVID-19 patients throughout the home
surveillance period. With the current breakthrough of PPG-based BP measurement frame-
works, continuous monitoring using cuffless sensors seems possible as several advantages
are associated with this sensor including its portability, reliability, easily operated, and
cost-effective [31,32].

The generation of a PPG pulse is based on an optical principle that involves the
interaction between a light-emitting diode (LED) and a photodetector (PD). LED emits light
on peripheral tissues, and then the light is scattered to the extent where only a proportion
of the light is absorbed by the tissues. PD measures differences in absorbed light as arterial
blood volume changes during a cardiac cycle [33]. Typically, a PPG waveform consists
of three significant points: systolic peak, dicrotic notch, and diastolic peak, as shown in
Figure 2. These peaks define the highest and lowest BP values during one cycle of heart
activity; meanwhile, the notch represents the backflow of blood into the heart, which causes
the closure of the aortic valve [34].
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For PPG-based BP prediction using PTT, two PPG sensors are placed further from
each other either at the same location or multiple peripheral sites. These sites could be
from the temporal artery (forehead), carotid artery (ear and neck), brachial artery (arm),
radial artery (wrist and finger), posterior tibial artery (ankle), and dorsalis pedis artery
(foot) [35]. However, there is a lack of evidence for the best selection of BP measurement
sites provided so far [36].

Finapres (Ohmeda, Model 2300) is an example of a commercialized digital PPG finger
cuff with a pre-installed infrared (IR) photocell, a manometer, an automated inflated cuff,
and a BP monitor. The utilization of Finapres as an arterial BP estimator was based on
a volume clamp to measure a continuous beat-to-beat finger BP waveform and generate
SBP, DBP, and MAP digitally. A model of continuous BP prediction was developed in [37]
for 27 healthy individuals based on photoplethysmogram intensity ratio (PIR) and PTT.
The estimated BP from that proposed method were compared with Finapres with an
accuracy of −0.37 ± 5.21, −0.08 ± 4.06 and −0.18 ± 4.13 mmHg, for SBP, DBP, and MAP,
respectively. It was found that the PIR-PTT method displayed higher correlation with
Finapres than those achieved with PTT algorithms. Further, Portapres is another readily
available PPG-based device that produces continuous results. Another work investigated
the relationship of depression and nocturnal BP of 19 adolescents during sleep and wake
states through continuous BP monitoring [38]. It was found that the Portapres model-2
(TNO-TPD, Biomedical Instrumentation, Amsterdam, Netherlands) was able to measure BP
values with very low disturbance, and greater SBP recordings were observed for depressed
subjects with an average of 11 mmHg difference from healthy groups. Nevertheless, more
efforts are required to extend both works on larger sample size for more comprehensive
evaluation of predicted BP.

PPG sensors display several limitations that require extensive efforts to improve
the efficacy and feasibility of PPG as an alternative for NIBP monitoring. One work
on BP estimation based on dual PPG sensors observed a dramatic reduction of PWV
variations only after the applied pressure at the measurement site was kept constant. This
shows that the susceptibility of the PPG signals to applied pressure might contribute to
substantial effects, such as artificial alteration of the PPG waveform [39]. Loss of dicrotic
notch has also been observed in the PPG waveform of the elderly because of aging [40],
which is an independent factor of CVD development [41]. The raw PPG signals are often
contaminated with various types of noises and require signal processing techniques to
isolate the clean PPG signals from uncorrelated noises for further prediction analyses, as
depicted in Figure 3.
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Figure 3. A representation of the PPG signals, where the blue line represents the raw PPG signal
before denoising and the red line shows the filtered PPG signals that are ready for further analyses.

2.2. Electrocardiogram

Electrocardiogram (ECG) has been employed by clinicians to measure cardiac physi-
ological signals non-intrusively, including heart rate (HR) estimation, heartbeat rhythm
regularity assessment, and CVD diagnosis. Even though the ECG waveform only displays
the heart’s electrical activity and reflects no BP information [42], the integration of ECG and
PPG sensors in the same system has been extensively studied for continuous BP monitoring.
This is because a high BP prediction accuracy will be generated and the approach can be
adopted in wearable devices, despite both signals depicting different working principles.

The ECG waveform consists of electrical cardiac depolarization and repolarization
phase recordings measured in the time domain [43], and the sinusoidal pattern of PQRST
complexes highly correlates with heartbeat rate [44]. Based on Figure 4, the P wave indicates
atrial depolarization within 0.11 s and a maximum amplitude of 3 mm. The QRS complex
denotes ventricle depolarization with quick response, i.e., less than the atrial contraction
duration in the P wave, and this complex has attracted attention as a CVD parameter,
followed by the T wave, which portrays ventricle repolarization [45].
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Figure 4. A common representation of the ECG waveform, where the red bold words indicate the P wave,
the QRS complex, and the T wave. The measured distance between (1) onset of the P wave to the onset of
the QRS complex, (2) offset of the S wave to the onset of the T wave, and (3) onset of the Q wave to the
offset of the T wave, are labelled as PR interval, ST segment, and QT interval, respectively.

There are many readily available cardiograph monitors in the market, but only a
few of them incorporate ECG and PPG in the same device, such as CardioQVARK and
MAX86150 (Maxim Integrated, San Jose, CA, USA). CardioQVARK was developed by
Russian engineers to monitor real-time cardiovascular parameters for at-home patients. For
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example, BP values of 500 participants in [46] were found to be highly correlated between
CardioQVARK and the cuff BP monitor with an accuracy of 0.32 ± 3.63 mmHg and 0.35
± 2.95 mmHg for SBP and DBP, respectively. Another work performed BP estimation
on 140 volunteers using MAX86150 module and achieved a 5.7 ± 5.5 mmHg difference
from the cuff sphygmomanometer [47]. However, this study applied extensive feature
engineering work to obtain a good signal quality prior to regression analyses. A graphical
representation of the raw and normalized ECG signals is shown in Figure 5.
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Artifacts contamination is a key challenge for the implementation of ECG signals in
BP monitoring field, especially because this sensor is sensitive to non-constrained environ-
ments that are filled with potential sources of noises, including motion artifact, incorrect
electrode placement, and baseline wander. Hence, several methods have been suggested to
address this issue, such as using ML models and advanced signal processing algorithms.

2.3. Tonometer

Arterial tonometry (AT), based on the applanation tonometry principle, is an estab-
lished method of measuring arterial BP non-invasively, in which pressure is given toward
the arterial line causing the compression of the arteries, thus producing arterial pressure
waveforms. BP can be estimated through direct and indirect techniques of AT [48].

For the direct method, BP values are estimated from the recording of pressure wave-
forms at the common carotid artery. The reason behind this process is that the waveform
shape of the common carotid artery resembles that of the aorta, giving an advantage to the
prior method in terms of accessibility [49]. Thus, that the common carotid artery shows
close vicinity to the aortic BP measurement site in AT. Indirect estimation begins with
pressing a hand-held tonometer on the radial artery with low pressure to generate radial
artery pressure [50]. The latter pressure is detected by a sensor and forms a radial artery
waveform. The waveform is recorded and initiates the formation of a central pressure
waveform via the generalized transfer function [48]. Radial AT is suitable for clinical use
because of its ease of measurement, better comfort, and reproducible results [51]. Further-
more, AT is a good approach for investigating left ventricular heart function for a detailed
assessment [52].

BP monitors in the market that operate with AT setting include PulsePen (DiaTecne,
Milan, Italy) [53], SphygmoCor XCEL (AtCor Medical, Sydney, NSW, Australia) [54], and
Omron HEM-9000AI (Omron Healthcare, Kyoto, Japan) [55]. A recent work evaluated
the prediction accuracy of central BP for 20 subjects during rest and exercise stages using
the SphygmoCor XCEL and a cuff sphygmomanometer [56]. The results show that BP
values between both techniques are comparable during steady-state and low intensity
exercise with a difference of 0.6 ± 5.4 mmHg and 0.8 ± 2.1 mmHg for SBP and DBP,
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respectively. Further, the cuff BP monitor lacks the capability to measure BP during a
high intensity state due to the exertion caused by movement, which leads to pulse signals
distortion. Another study compared BP values measured using the BPro® tonometer sensor
(Healthstats, Singapore) and a cuff sphygmomanometer to determine which modality
best predicted chronic kidney disease (CKD) obtained from 10,197 subjects [57]. It was
found that both techniques offer promising results as CKD predictors, but the SBP and
DBP estimated by the cuff BP monitor are more biased towards women than men, with
lower BP values. This indicates that with BPro® employment, it may be a great surrogate
to the current (goal) standard BP monitoring tool and more efforts can be done to study
its usability as a CKD risk predictor especially in women, as this group experiences the
inevitable process of menopause, which may contribute to stiffer aorta.

However, the pulse waveforms obtained from AT contain limited information, such
as pulse pressure recordings, and this method is incapable of providing absolute SBP and
DBP values [19], systemic errors caused by cuff-based calibration [58], and poor prediction
accuracy when calibrated with invasive catheterization [59]. Recently, the risk stratification
of employing AT for estimating BP in the carotid artery has increased; consequently,
this method shows declining utility trends in clinical settings because of the difficulty of
achieving sufficient applanation, the possibility of thrombus displacement [60], and the
calibration inaccuracy of a brachial sphygmomanometer. The author suggested that carotid
BP AT should be applied with mild pressure and regular checking of central pressure
waveforms should be avoided.

2.4. Ultrasound

The prediction of BP using an ultrasound (US) approach is not supported by theoretical
principle; nevertheless, algorithms such as PWV and Moens–Korteweg (MK) equations are
significant for enabling the indirect estimation of BP values as well as solving computational
related problems [61]. US is based on the concept of sound waves that propagate in a medium
with pulse frequencies beyond the limit of human being’s hearing ability [62]. It can be used
to measure blood velocity, blood flow, and the imaging of an artery embedded in organs [63]
such as the heart and uterus. US probe or transducer plays a vital role in capturing and
displaying signals. When electricity flows through a transducer, it transmits wave pulses
(signals) and hits the subject of interest, such as blood cells. Then, the reflected signal from
blood approaches the transducer before it generates signal waveforms as output [64].

A previous study [65] reported that US Doppler is a better marker than the cuff
sphygmomanometer for blood flow speed monitoring through the probe placement over the
brachial artery for patients diagnosed with muscular atrophy, in which the Korotkoff sounds
are almost inaudible [25]. The main factors contributing to the widespread application
of the Doppler concept in US for measuring BP are its ability to penetrate deep tissue
and vessels [66], to monitor dimensions of vessel wall in longitudinal and transverse
orientations [67], and to calculate blood flow velocity [68].

There are various groups currently working on US-based BP detection studies through
different approaches. Meusel et al. [61] compared the commercialized US transducers with
other NIBP monitoring methods to validate the potential application of US in continuous
BP measurement of 10 healthy subjects. The US transducers models used in this work
are Siemens Acuson S2000, Transducer 14L5 (Siemens Healthcare, Erlangen, Germany)
and Philips iU22, Transducer L17-5 (Philips Medical Systems, Hamburg, Germany). Both
devices are then validated with reference BP from two sources: the cuff sphygmomanometer
and the CNAP™ monitor (Monitor Dräger Infinity Delta, Luebeck, Germany), where all
of these are placed at three measurement sites and greater prediction accuracy is depicted
by US monitoring tools than continuous non-invasive arterial pressure (CNAP) when
compared to cuff BP.

In a different approach, Zakrzewski et al. [69] measured arterial tissue displacements
using US strain elastography and converted these to estimate pulse pressure using al-
gorithms. Slow compression sweeps were applied to the carotid artery and the results
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demonstrated the pressure waveforms, as shown in Figure 6a. It was found that the artery
was greatly compressed as an effect of increasing the applied force, suggesting the resis-
tance of the artery wall against deformation [70]. In addition, the peaks and throughs
of the pressure waveform are labelled as SBP (red) and DBP (blue), respectively. This
work is an extension of previous study [71] that included real subjects with no history
of CVD and hypertension over the course of one month. Figure 6b displays BP sweeps
of a hypertensive subject. It was observed that since the first sweep, the BP level kept
decreasing until it reached to a point slightly before the tenth day, where it started to show a
noticeable increase. The reported results could be due to the history of hypertension, which
confirmed the prevention of any BP spike during the earlier sweeps through medication
intake. Additionally, the predicted SBP and DBP were comparable with the cuff-based
BP values. Although the utilized approach of continuous BP estimation varies from one
group to another, the proposed works achieved satisfactory results, and this could be a
groundwork for bridging the gap in continuous NIBP monitoring enabled by US.
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Figure 6. (a) Arterial tissue displacements against applied force graph. The arterial size changes showing
internal BP pulse upon application of external pressure. Different marker colours define SBP (red) and
DBP (blue) locations at the peak and trough of pressure waveform. (b) BP sweep of hypertensive subjects
in one month, where the green line represents the reference BP from the cuff sphygmomanometer, and
the red and blue dashed lines show the predicted SBP and DBP, respectively.



Sensors 2022, 22, 6195 9 of 22

Several weaknesses of the US method for NIBP monitoring are cumbersome US probe
placement procedures, the need to have skilled operators, sensitivity to motion, and bad
contact between the US probe and the skin area [72]. This is because of the uneven layer
of applied US gel on the skin surface, which will attenuate the US wave and reduce the
prediction accuracy. Additionally, a patient was reported to have an allergen reaction
towards the US gel’s composition, which resulted in contact dermatitis [73].

Overall, regardless of the sensing mechanisms, these NIBP sensors offer promising
potentials for guiding future research of continuous BP prediction. For example, the
widespread usage of pulse oximeters in a clinical environment indicates the feasibility
of optical-based sensors capturing a human bio-signal, even though the BP estimation
using PPG is still in its infancy stage. In addition, the integration of PPG and ECG in the
same platform provides valuable discoveries including high BP signals quality, thus showing
the importance of ongoing efforts to improve the reliability of this system. Conversely, low
research works are reported on the AT-based BP prediction approach due to several factors,
including poor DBP estimation accuracy and sensor errors. From the aspect of US BP monitors,
increasing attention is being paid to improve device portability, low cost and easy operation
since the current ones in the market are not suitable for continuous BP monitoring.

3. Continuous BP Prediction Techniques and Validation

Having investigated the different sensing mechanisms of NIBP sensors, this section
discusses the prediction approaches of continuous BP monitoring based on acquired signals
from NIBP sensors and compares the SBP, DBP, and MAP results estimated using various
ML algorithms in several reported works based on the international protocols for clinical
verification of BP monitoring devices.

3.1. Pulse Arrival Time (PAT)

One way of predicting BP values continuously is by performing the PAT calculation
on acquired pulse signals from PPG and ECG type of sensors. PAT can be expressed as the
time taken for the pulse wave to travel from the heart to the peripheral location. In general,
the PAT at the specified points of the PPG signals was derived from the beginning of the
heartbeat at the R-peak of the ECG, as displayed in Figure 7.
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The points could be from the R-peak of the ECG signal to the foot of PPG (PATf), the
mid-point of the PPG (PATd) or the peak of the PPG (PATp) waveform. The measurement
of PAT usually includes the pre-ejection period (PEP) that incorporates the heart’s elec-
tromechanical delay, which explains the relationship of the PEP and PTT, as shown in
Equation (1).

PAT = PEP + PTT (1)

Bote et al. [74] developed various PAT-based models for the continuous BP prediction
of 53 patients from the Medical Information Mart for Intensive Care (MIMIC) database
and performed frequent calibration with the cuff BP monitor. However, the result was that
only DBP estimation achieved a passing grade according to the AAMI standard, suggesting
further efforts are needed to understand the effect of PEP to PAT. Yoon et al. [75] investigated the
relationship between pulse wave analysis (PWA) and BP on a sole measurement site with fea-
tures extracted from ECG and PPG for PAT derivation. It was found that the proposed method
is challenging due to the motion artifact as the confounding factor, yet, the PWA-BP model
is feasible for the continuous cuffless NIBP measurement through PAT-derived information.
Tang et al. [76] developed a predictive-based system for continuous NIBP monitoring using
PPG and ECG mounted on an armchair through PAT calculation. They applied this system to
healthy volunteers only and obtained low DBP values during measurements.

Wong et al. [77] studied the ability of PEP in estimating BP from 22 healthy volunteers
and compared the results with the cuff monitor as the reference. The PAT technique
predicted SBP with a 0.0 ± 6.6 mmHg difference from the reference BP. This work proposed
the capability of PEP as a surrogate of the PTT-based BP prediction. PEP can be used to
convert the electrical activity of the heart to the pumping of the mechanical heart, which
can be abruptly altered because of psychological behavior and aging. Despite that, there
are few disagreements of PEP inclusion in BP-related works, as discussed in [78]. The
PAT–BP relationship has a few drawbacks, such as less significant PAT features than PPG
features as estimated from online PPG and ECG signals [79], lack of calibration trials, and
asynchronous signals of HR and BP.

3.2. Pulse Transit Time (PTT)

Another underlying concept of estimating BP continuously is through the PTT calculation,
where it is measured from the time interval between the pressure generation at heart caused by
ventricular depolarization and blood volume increase at a peripheral location due to pumping
of blood out of the heart [80]. In short, PTT can be defined as the time delay between two
measurement points along the arterial tree using pulse signals generated from PPG-ECG or
dual PPG sensors. From Equation (1), PTT can be calculated by subtracting the PET from the
PAP. The hypothesis of BP–PTT relationship is shown in Equation (2):

BP =
A

PTT2 + B (2)

where A and B are constant parameters that varied depending on individuals [81].
Figure 8 depicts the comparison between PEP and PTT calculations based on the ECG

and the PPG signals. Each parameter such as PEP, PAT, and PTT can be elucidated as
the following. As mentioned before, the time delay between the QRS complex and the
beginning of the ventricular ejection of the ECG signal is measured as PEP. Further, PAT is
calculated as the time delay between the R-peak of the ECG signal and the foot of the PPG
signal. For the case of PTT-based calculation from dual PPG sensors, the measured time
delay begins from the foot of the first PPG signal known as the proximal point and ends at
the distal point where the foot of the second PPG signal is located.
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Block et al. [82] compared the PTT waveforms measured at six different measurement
locations on 32 subjects using ECG and PPG sensors as well as validated each BP with
the cuff sphygmomanometer. The PTT-based measurements predicted BP with the least
correlation when compared with the cuff BP due to the poor detection of the PPG sig-
nals. Another work by Miao et al. [83] estimated BP using a fusion-based model from a
multi-sensor platform that consists of ECG and other types of sensors on 85 volunteers.
The proposed method yielded better prediction accuracy when calibrated with cuff BP
frequently. In addition, it was observed that the inclusion of PEP in PTT calculation con-
tributed to consistent BP readings, which could be potentially influenced by the further
propagation of the pulse wave in the body. Nonetheless, the PTT approach is still insuf-
ficient to validate the best prediction method that will portray high accuracy, low error
deviations, and robustness against a dynamic environment, as the human cardiovascular
system is complex and challenging for a beat-to-beat measurement.

3.3. Pulse Wave Velocity (PWV)

Notably, several papers reported on the counterpart of PPT, which uses a PWV calcu-
lation to estimate BP values. According to the MK equation, PWV can be defined as the
velocity of the pulse wave travelling along the artery vessel and similarly, the correlation
between PWV and BP can be defined as shown in Equation (3):

PWV =
L

PTT
=

√
hE
ρd

(3)

where PTT is the time taken for a pulse wave to reach from a proximal point to a distal point in a
specified length of blood vessel, denoted as L [70,71]. h is the artery wall thickness, E is Young’s
modulus of the arterial wall’s elasticity, ρ is the density of blood, and d is the distance [84].

Li et al. [85] compared the estimated BP measured using a mercury sphygmomanome-
ter, an electronic cuff BP monitor, and the proposed method that comprises a pulse sensor
and ECG. The reported findings are as follows: the PWV-based BP prediction model passed
the AAMI standard, the accuracy improved by 58%, and there were mean differences of
3 ± 2.5 mmHg and 4 ± 3 mmHg for SBP and DBP, respectively, when compared with
both sphygmomanometers. Byfield et al. [39] estimated the PWV-based BP estimation of
26 volunteers measured on the same finger at different locations, fingertip and below finger,
using dual PPG sensors. It was observed that PWV variations reduced dramatically after
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the application of constant pressure at the contact area, and the predicted BP achieved mean
errors of 2.117 ± 0.257 mmHg and 2.935 ± 0.721 mmHg for SBP and DBP, respectively.

Based on the above-mentioned techniques, it can be deduced that they are PPG-
dependent, although several studies explored the sole utilization of ECG signal. The
computational complexities of such studies are often higher and require knowledgeable
experts. Nevertheless, there is no clear evidence that BP is best estimated by PAT, PTT
or PWV. Hence, more research is required to understand these methods and evaluate the
accuracy according to the international validation standards.

3.4. Machine Learning (ML)

ML is the ability of self-learning from past experiences to generate desired results,
such as prediction, classification, or feedback [86]. This technique has shown tremendous
potentials in disease prediction [87–90]. BP estimation obtained from NIBP sensors, such
as PPG and ECG, requires signal analysis, including pre-processing, feature extraction,
statistical analysis, and regression or classification. Figure 9 displays the flowchart of signal
analysis performance to estimate BP for continuous NIBP monitoring.
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Once the signal acquisition process completes, pre-processing is usually performed
on the signals prior to prediction analysis to minimize noises by filtering [91]. Figure 9
represents the dual PPG signals after normalization using a Butterworth bandpass filter [39].
Feature extraction is an act of building related features from designated information that
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aims to enhance the learning performance in order to provide better prediction [92]. Signal
decomposition helps produce important information and decomposes the signal into scales;
this technique, such as wavelet transform, has been widely used in frequency-domain
investigations [93]. Statistical analysis is subsequently conducted to identify the significant
discrepancies between the predicted and reference variables. Several methods associated
with this process are paired the t-test [94] and the coefficient of determination [95]. The
signal quality index (SQI) is an important metric for assessing signal quality [96]. The final
stage of BP monitoring studies involves ML regressors to perform estimation based on SBP,
DBP, and sometimes MAP values, where the results are denoted as mean absolute error
(MAE) and standard deviation (SD) or MAE ± SD [97].

BP prediction based on ML approaches covers the estimation of MAP, which is signif-
icant aside from SBP and DBP values for validation of the proposed models to estimate
BP. MAP is defined as the average arterial pressure measured in a complete cardiac cycle,
which consists of systole and diastole phases [98], as displayed in Equation (4) [99].

MAP =
SBP + (2 × DBP)

3
(4)

The most frequently used algorithms in ML for BP prediction are random forest
(RF) and k-nearest neighbors (KNN), among others. For instance, RF is made up of
multiple decision trees and provides prediction based on the average votes from the
trees. Meanwhile, KNN learns from storing information and provides output based on
comparative resemblance of datasets using the closest neighbours concept [100]. Several
works on ML-based approaches for BP prediction based on the bio-signals obtained from
NIBP sensors are reviewed as following.

Wu et al. [101] attempted to estimate BP by using a bio-signal device developed with
an embedded ECG sensor and compared its results with those obtained using a mercury
sphygmomanometer. BP prediction was performed using implemented neural network
(NN) algorithms and ECG signals and ECG-driven information correlated with PPG. The
proposed method portrayed great potentials, such as suitability for long-term NIBP moni-
toring, reduced pain due to the cuff, and unnecessary separate sensors for measurement.
Khalid et al. [102] estimated BP values from PPG-based features via supervised random
tree (RT), multiple linear regression (MLR), and support vector machine (SVM) algorithms
for different states of BP. The approach used in this study is different from the classical
PTT approach in that it extracts features from a single site of PPG instead of two distal
points of sensor placement, usually PPG and ECG. However, RT performs the best in the
normotensive category rather than in the hypertensive category, despite achieving the
highest prediction accuracy among other models owing to small normotensive datasets.

Mejía-Mejía et al. [103] extracted the pulse rate variability features of PPG and PPG
derivative (first and second) signals obtained from the MIMIC II database for classification
tasks of BP. Results show that KNN outperforms other models with a maximum accuracy
of 83.08 ± 1.48% for identifying BP in hypertension state. Conversely, El-Hajj et al. [104]
reported that MLR depicts the lowest performance among other models and found a non-
collinearity between features of PPG and BP, suggesting that ML alone is insufficient to
predict BP accurately and continuously. Therefore, deep learning (DL) approaches have
been incorporated to predict BP from the MIMIC II database. As a result, the estimated
SBP and DBP values improve greatly with estimation errors reduced by three times than
those of MLR.

DL is an extension of ML. It is a powerful method that enables complicated automated
feature extraction with high performance in big data, and it reveals implicit information and
automated learning without hand-crafted feature selection because of neuron layer stacking,
better known as deep NN [105]. DL is also reportedly employed in image processing in which
it can be used to visualize the arterial BP waveform. Qin et al. [106] proposed a novel method
to visualize the BP waveform from a single PPG signal with the adoption of a regularized



Sensors 2022, 22, 6195 14 of 22

deep autoencoder. This study obtains a satisfactory BP waveform, and further optimization
can be performed on the developed method for wearable BP sensor integration.

For BP estimation works based on bio-signal processing, convolutional neural network
(CNN) and long short-term memory (LSTM) networks are among of the DL models that
are frequently adopted by the biomedical engineers and researchers. Several investigations
on BP prediction using these models are surveyed as follows. CNN is frequently utilized to
learn trends of signals and to identify significant features within the signals [107], in such a
way that it can be trained to detect abnormalities within ECG signals [108]. Baek et al. [109]
proposed a novel cuffless BP prediction method based on a deep CNN using raw signals for
training without PWV feature extraction and predicted BP accurately without calibration.
Ibtehaz et al. [110] proposed a novel method of mapping the PPG signals from the MIMIC
II database to estimate the arterial BP waveform based on deep CNN and multi-resolution
analyses. The proposed method reduces phase lag for determining the relationship of
PPG with BP and validates the accuracy of developed algorithms with the employment of
stand-alone sensors.

Meanwhile, LSTM network can memorize previous learnings and generally utilize
sequential data [111]. It can be used in studies with ECG and BP-related problems [112].
CNN combined with LSTM performs better than single CNN and LSTM models because of
its more accurate prediction based on learnings from sequential data in forward and reverse
modes. For instance, Baker et al. [113] devised a hybrid network composed of CNN and
LSTM to predict SBP, DBP, and MAP values obtained from raw PPG and ECG signals of the
MIMIC database. All BP values fulfill the passing criteria of the Advancement of Medical
Instrumentation (AAMI) standard and achieve grade A for the BHS protocol, showing
satisfactory results when validated with BP values measured with a cuff sphygmomanome-
ter. The hybridized algorithms produce estimated values of 4.41 ± 6.11, 2.91 ± 4.23, and
2.77 ± 3.88 for SBP, DBP, and MAP, respectively. Corresponding to the outstanding out-
comes, the proposed scheme has portrayed good reliability, as BP predictive algorithms
have the potential to be expanded into further clinical usage for realization of real-time and
continuous NIBP.

3.5. Validation of Predicted BP According to International Standards
3.5.1. Advancement of Medical Instrumentation (AAMI) Standard

The reported learnings obtained from several studies were compared to identify which
method satisfies the passing criteria for AAMI and portrays high prediction accuracy at par
to the reference of NIBP measurement with a cuff sphygmomanometer. The proposed NIBP
device is considered as AAMI approved when respective performance metrics display less
than or equal to 5 mmHg for MAE and 8 mmHg for SD with at least 85 subjects [114].
Table 1 summarizes the validations of algorithms according to AAMI. All the learnings
were not calibrated prior to prediction analyses, however, calibrated BPs based on previous
works [109,115] were included in the table to observe the grade changes upon calibration
performance. In [103], all BP values fulfill the standard of AAMI because more features
can be extracted from pulse rate variabilities (PRV) during the longer duration of the
segmentation, allowing a greater BP prediction quality. In [109], it was observed that prior
to calibration, the predicted SBP is unable to pass the AAMI level due to the incorrect
estimation according to BP states, such as overestimation for low pressure and vice versa.
In [115], it was observed that the SBP prediction based on the proposed method failed to
satisfy the AAMI criteria. This is due to the target variance of SBP being doubled to that of
DBP, which led to higher prediction deviations.
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Table 1. Validation of algorithms based on AAMI standard.

* Ref. Source Model Feature Subjects BP MAE
(mmHg)

SD
(mmHg) Grade

AAMI ≥85 SBP/DBP/MAP ≤5 ≤8 Pass

[39] PPG-PPG PWV,
14 regressors PPG 26 (22 male,

4 female)

SBP
DBP
MAP

2.117
2.935

-

0.257
0.721

-

Low
dataset

[100] Single PPG RT, MLR,
SVM PPG Queensland

32

SBP
DBP
MAP

−0.1
−0.6

-

6.5
5.2
-

Low
dataset

[103] PPG, ABP KNN, ANN, SVM PRV
MIMIC II
500

SBP 4.74 2.33 Pass
DBP 1.78 0.14 Pass
MAP 2.55 0.78 Pass

[104] Single PPG,
ABP

MLR, Bi-RNN,
Attention
mechanism

MIMIC II
947

SBP −0.48 9.15 Pass

52 PPG DBP
MAP

−0.49
-

5.10
-

Pass
NA

[109] PPG, ECG,
ABP

MIMIC II
379

SBP −1.23 12.80 Fail

1D CNN Raw DBP
MAP

0.13
-

7.54
-

Pass
*** NA

[109]
** Cal.

PPG, ECG,
ABP

1D CNN Raw
MIMIC II
379

SBP −1.29 7.58 Pass
DBP −0.48 5.08 Pass
MAP - - NA

PPG U-Net,
MultiResUNet

MIMIC II
942

SBP −1.582 10.688 Fail
[110] PPG DBP 1.619 6.859 Pass

MAP 0.631 4.962 Pass

MIMIC
6972

SBP 4.41 6.11 Pass
[113] PPG, ECG CNN-LSTM Raw DBP 2.91 4.23 Pass

MAP 2.77 3.88 Pass

PPG, ECG,
ABP

LR, DT, SVM,
AdaBoost, RF

PPG, PAT,
HR

MIMIC II
942

SBP −0.06 9.88 Fail
[115] DBP 0.36 5.70 Pass

MAP 0.16 5.25 Pass

[115]
Cal.

PPG, ECG,
ABP

LR, DT, SVM,
AdaBoost, RF

PPG, PAT,
HR

MIMIC II
57

SBP
DBP
MAP

5.45
3.52

-

8.21
4.31

-

Low
dataset

* Ref. = Reference. ** Cal. = Calibration. *** NA = Not available.

3.5.2. British Hypertension Society (BHS) Protocol

Table 2 summarizes the reported learnings utilized in several studies for the valida-
tion of algorithms in accordance with the BHS protocol for NIBP monitoring with the
achievement of prediction accuracy as a cuff sphygmomanometer, which is regarded as
the gold standard technique in this area. These learnings were not calibrated prior to
the estimation of BP, however, noticeable grade changes were observed after calibration
performance as portrayed in [109]. The bold word denotes the study [113] that reported
the best performing learnings to predict BP, among others, in which all BP values achieved
an “A” grade. According to the BHS protocol [116], three grades are assigned to a newly
developed yet commercialized BP monitor. The grading depends on these elements of
absolute difference values: greater than or equal to 5 mmHg, 10 mmHg, and 15 mmHg.
The computation of absolute difference for each category is in percentage form, and a grade
of A, B, or C is designated depending on the percentage of the proposed device for every
class. The eligibility of medical devices to be considered in clinical settings is exclusively
for those with a grade of A or B in accordance with the BHS protocol.
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Table 2. Validation of algorithms based on BHS protocol.

* Ref. Source Model Feature Subjects BP
Absolute Difference

Grade≤5 ≤10 ≤15

BHS SBP/DBP/MAP
60% 85% 95% A
50% 75% 90% B
40% 65% 85% C

[109]
PPG,
ECG,
ABP

MIMIC II
379

SBP 40.6% 67.5% 80.2% D

1D CNN Raw DBP
MAP

64.1%
62.0%

87.1%
87.1%

95.0%
95.8%

A
A

[109]
** Cal.

PPG,
ECG,
ABP

1D CNN Raw
MIMIC II
379

SBP 59.6% 87.3% 93.7% B
DBP
MAP

79.2%
79.7%

95.3%
96.0%

97.9%
99.2%

A
A

[110] PPG U-Net,
MultiResUNet

PPG MIMIC II
942

SBP 70.8% 85.3% 90.9% B
DBP 82.8% 92.2% 95.7% A
MAP 87.4% 95.2% 97.7% A

[113] PPG, ECG CNN-LSTM Raw
MIMIC
6972

SBP 67.66% 89.82% 96.82% A
DBP 82.79% 96.12% 99.09% A
MAP 84.21% 97.38% 99.58% A

[115]
PPG,
ECG,
ABP

LR, DT, SVM,
AdaBoost, RF

PPG, PAT,
HR

MIMIC II
942

SBP 34.1% 56.5% 72.7% D
DBP 62.7% 87.1% 95.7% A
MAP 54.2% 81.8% 93.1% B

* Ref. = Reference. ** Cal. = Calibration.

4. Challenges and Future Recommendations

Continual research on the development of NIBP technology faces the following key chal-
lenges for replacing the current physical measurement protocol: source of data, motion artifacts
of PPG, calibration performance, dataset size, learning selection, sphygmomanometer varia-
tion models, and hampering of wires. Therefore, further efforts are needed to address these
challenges and improve the efficiency of NIBP technology for continuous BP monitoring.

To begin with, online open-source databases have been widely employed in continuous
BP prediction, but more offline data are required. For example, the inclusion of healthy
subjects in the investigations are needed to resolve this challenge. Although MIMIC
data collection requires minimal effort, the evaluation of BP accuracy is still scarce. This is
because the data extracted from MIMIC contains the records of critically ill patients obtained
from the ICU. Moreover, there is a loss of some of the physiological parameters during
offline signal analysis, which may be caused by the ingestion of drugs and medication
by patients. Hence, by selecting human volunteers as the mean of extracting BP-related
features, BP variation and discrepancies can be reduced to make a good prediction.

The next challenge is the contamination of motion artifacts in the majority of NIBP
sensors. Most of the data acquisition should be performed stationarily without any distur-
bance to avoid any distorted signal or loss of significant parameters. To address this issue,
the proposed method can be trained using datasets with various kinds of interferences.
As the learnings capture and store the information, they can be further tested in dynamic
environments with no applied constraints to evaluate the robustness and flexibility of
these models in providing great estimation. Additionally, signal processing analysis can be
performed on the raw signals to smoothen the signals and remove any implicit noises and
baseline wander.

Furthermore, there is a lack of an established calibration system for continuous BP
monitoring. Some studies unfairly justified their novel approaches as high satisfactory
without performing the proper calibration with the reference measurement of NIBP, but
instead validated with other NIBP sensors such as volume clamp-based PPG, AT or an
unmentioned reference source. This step should be rectified by establishing a calibration
system and computing the difference in estimated BP using the proposed techniques from
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ground truth values. If there is any visible anomaly in the BP reading, some optimizations
can be carried out to enhance the performance of the devised system as well as improve
the accuracy of the predicted BP.

Moreover, another challenge associated with NIBP implementation is the small size
of datasets and the imbalanced number of volunteers, which is dominated by healthy
subjects rather than diseased patients. To mitigate this matter, the incorporation of larger
demographic datasets may help to identify any unusual pattern of pulse waveform, which
is essential for BP analysis. Some of the inclusion criteria, including age, gender, height,
weight, mental health, and history of disease, are significant prior to data acquisition
to ensure the initial datasets are adequate for further analyses. Additionally, learning
selection plays an important role in this part because advanced learnings, such as DL or
hybridization of learnings, enable better output generation. It is worth noting that the
suggested solution can be more complicated and difficult to understand for novice users,
and that it can increase the computational complexity with longer training time and bigger
computational memory to store the vast amount of data.

Another key challenge of NIBP technology integration is the irrelevant interchange-
ability of the cuff sphygmomanometer, which explains why BP values of the same subject
vary when measured with different BP monitors. One of the possible reasons is that the
algorithms implemented for BP interpretation are developed exclusively for every model
and remain confidential to the consumers or among developers. Hence, more research
efforts are currently working on seeking for the best possible alternative to measure contin-
uous BP non-invasively and suitably for everyone through a standardized predictive-based
technique using the PAT, PTT or PWV approach, and to fuse it with available learnings.

Finally, the traditional BP monitoring system configuration usually involves many
wires and may cause some interference, causing less accurate BP estimation, regardless of
motion disturbances. This set-up is not viable for continuous monitoring and can be further
minimized into compact size with the embedding of electronics into Internet-of-Things
platforms. This explains the abundance of research works exploring the aspects of material
selection and structural engineering of wearable sensors to integrate this powerful device
into real-time human health monitoring and improving the life quality of mankind.

5. Conclusions

Rapid technological advances have led to the development of optical, electrical, pres-
sure, and ultrasonic sensors in searching for the current (gold) standard NIBP replacement
that can capture data continuously in real time and can be accessed remotely. These sen-
sors portray promising features, such as improved prediction accuracy, continuous data
measurement, and mercury-free operation. Successful BP estimation using algorithms
is a step forward toward the emergence of smart human health monitoring to keep up
with the future trend through the development of accurate, cost-effective, comfortable,
and clinically-approved continuous NIBP monitoring systems. In conclusion, the realiza-
tion of continuous NIBP technology is possible considering the existing shortcomings are
taken into account and resolved systematically for the enhanced future of human health
monitoring and seamless data transmission.
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