
Received April 27, 2022, accepted May 13, 2022, date of publication May 26, 2022, date of current version June 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3178157

Automated Deployment of Virtual Network
Function in 5G Network Slicing Using
Deep Reinforcement Learning
ANUAR OTHMAN 1, (Member, IEEE), NAZRUL A. NAYAN 1,2, (Member, IEEE),
AND SITI N. H. S. ABDULLAH 3
1Department of Electrical Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
2Institut Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
3Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Corresponding author: Nazrul A. Nayan (nazrul@ukm.edu.my)

This work was supported in part by the Ministry of Education, Malaysia, and Universiti Kebangsaan Malaysia under Grant
FRGS/1/2019/TK04/UKM/02/4.

ABSTRACT Fifth-generation mobile technologies introduce the concept of network slicing, which allows
the creation of logical networks consisting of network services and the associated physical and virtual
network functions. The early form of network slicing allowed for fixed resource allocation and static network
function deployment. However, this approach can lead to inefficiency and service degradation. This study
aims to optimize the deployment of virtual network functions within a hybrid cloud infrastructure from
the perspective of mission-critical communications. The first task involves designing a deep reinforcement
learning-based scheme to determine a significant deployment policy that minimizes the overall delays and
costs of logical networks. The scheme performance is evaluated by using a simulated traffic dataset that
followed Poisson distributions for a wide range of configurations. In dynamic environments with stationary
traffic patterns, simulation results show that the scheme outperforms the one-step look-ahead and fixed-
location algorithms by 35.80% and 52.16%, respectively, on average. A value iteration-based scheme is
used as a benchmark and only surpasses the proposed scheme by 3.5% on average. Simulation results using
a real-world traffic dataset show that the scheme can support nonstationary traffic patterns and cater to large-
scale scenarios with many suitable deployment locations by leveraging a function that indicates the relative
importance of selecting one location over the others.

INDEX TERMS 5G mobile communication, decision support systems, edge computing, intelligent agents,
machine learning, multi-layer neural network, network function virtualization.

I. INTRODUCTION
The advent of fifth-generation (5G) mobile technologies
has introduced the sophisticated concept of network slicing,
which allows the creation of logical networks in a common
infrastructure with appropriate isolation, resources, and opti-
mized topology [1]. This concept is considered one of the
key enablers of ultralow latency in 5G systems [2]. A logical
network is composed of network services and their associated
functions that can be physical or virtual [3]. It can serve
different uses, such as smart factories, autonomous vehi-
cles, and mission-critical services (MCS) for public safety

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

agencies [4]. In previous studies, we reviewed the charac-
teristics of a public-safety-grade network [5] and discussed
the resource allocation schemes in 5G from the perspective
of MCS [6]. The early form of network slicing enabled the
creation of logical networks with a fixed resource alloca-
tion and static network function deployment. However, this
approach may lead to inefficiencies, especially when logical
networks are underutilized, and may cause service degrada-
tion in the case of network function overload or dynamic
topology changes. In the case of a virtual network function
(VNF), migrating the function to a better location when the
network is congested is crucial. In summary, network slicing
improves 5G flexibility and scalability while introducing new
challenges, particularly in orchestrating the diverse resources

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61065

https://orcid.org/0000-0002-8923-019X
https://orcid.org/0000-0001-6657-2982
https://orcid.org/0000-0002-2602-7805
https://orcid.org/0000-0002-5196-8148

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 1. Illustration of MCS use case in a 5G mobile network. Edge
clouds are hosted at different base stations and directly connected to a
central cloud through fiber optics. Base stations are clustered based on
their locations and all edge clouds within a cluster are interconnected
using full mesh topology.

of a network function. The deployment of network functions
must be managed efficiently within a hybrid cloud infrastruc-
ture comprising central and edge computing resources.

A sample scenario of network slicing is illustrated in Fig. 1,
in which an agency procures a logical network, referred to as
the main critical slice in this study, from a mobile network
operator and provides an MCS to its professional users. This
service requires a reliable and resilient network that can
guarantee adequate quality of service in all scenarios [7].
Each base station serves all the users within its coverage area,
and a user can only connect to a single base station. Other
network slices have a lower priority for consumers. Initially,
the traffic load generated by professional users at all locations
is low, and the delay requirements are satisfied by the main
critical slice. The slice is created by deploying an MCS VNF
in the central cloud. However, several planned and unplanned
events, such as local elections or riots, occur at random loca-
tions within a certain period (e.g., one day). Consequently, the
traffic flow generated by the users at these locations increase
considerably. The loads of the links between the central cloud
and the affected base stations also increase. For example,
during the first event, professional users in the area 2 start
to experience delays higher than 300 ms, which exceeds the
key performance indicator suggested by 3GPP for MCS [8].
An ancillary critical slice can then be created by deploying
a distributed MCS VNF in the nearest edge cloud to reduce
the overall latency within the affected area. Given that the
location of the affected users changes frequently due to the
randomness of events, the distributed MCS VNF may need
to be migrated accordingly to maintain guaranteed service
quality. A good strategy that considers all relevant factors,
such as stochastic traffic load, must be established to avoid
unnecessary costs and delays incurred from deployment and
migration processes.

Professional users typically communicate in groups and
work within predefined operational areas [9]. Therefore, this
study assumes that only one ancillary critical slice can be
created concurrently for a cluster of edge clouds within an
operational area. When the traffic flow increases, the system
must decide whether to allow the main critical slice to con-
tinue serving the affected users or create an ancillary slice
by deploying the distributed MCS VNF in one edge cloud.
The options include those nearest to the affected users (i.e.,
hosted at the local base station) or others (i.e., hosted at the
neighboring base stations). In the two cases, no communi-
cation delay or cost to the central cloud occurs but at the
expense of migration and processing delays and costs of the
MCS VNF. The communication delay and cost associated
with inter-base station links are involved if a neighboring base
station is selected. If the main critical slice remains to serve
professional users, then migration and processing delays and
costs are not involved. However, in this case, communication
delays and costs to the central cloud are exacerbated. There-
fore, the task of the proposed VNF deployment scheme is
to determine the best strategy, that is, an optimal policy for
the creation of ancillary critical slices and migration of MCS
VNFs within a hybrid cloud infrastructure.

This study investigated the VNF deployment problem in
5G network slicing from the perspective of mission-critical
communication. In summary, our main contributions are as
follows:

1) We defined the VNF deployment problem in a stochas-
tic environment within a hybrid cloud infrastructure.
We formulated the problem as a Markov decision pro-
cess (MDP) and described its states, actions, state tran-
sitions, and reward function.

2) We proposed a reinforcement learning (RL)-based
scheme to automatically determine a near-optimal
deployment policy for minimizing the overall costs
and delays associated with professional users within a
cluster.

3) We evaluated the proposed scheme by using a sim-
ulated traffic dataset and compared its performance
with that of a benchmark scheme that uses a dynamic
programming-based algorithm.Wemeasured its adapt-
ability and scalability by using a real-world traffic
dataset recorded for Shanghai Telecom.

The remainder of this paper is organized as follows.
Section II reviews the related work on VNF deployment
schemes within a hybrid cloud infrastructure. Section III
presents the system model and problem formulation.
Section IV describes the proposed automated VNF deploy-
ment scheme using RL-based algorithms. Section V presents
a performance evaluation of the proposed scheme on simu-
lated and real-world traffic datasets. Section VI provides the
conclusion.

II. RELATED WORK
Recently, network slicing has elicited increasing interest
in academia and industry. Challenges in orchestrating the

61066 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

deployment of slice-constituent VNFs from the perspective
of services with strict delay requirements were discussed
in [10]–[13]. Solozabal et al. [10] proposed a hierarchical
distributed MCS architecture in a non-standalone 5G system,
which consists of deploying only the user plane or the user
and control planes of the MCS VNF in an edge cloud. The
target is to reduce the overall service latency and facili-
tate resource scaling of the VNF. The proposed architec-
ture requires the standardization of the complete separation
between the user and control planes. A dynamic deployment
scheme that optimizes VNF placement for a set of network
slices with stringent resource requirements was proposed in
[11]. The objective is to maximize the number of network
slices that are admitted to the network. The problem was
formulated as an integer linear programming problem and a
heuristic algorithm that leverages a best-fit decreasing strat-
egy was proposed. However, the authors ignored the dynamic
changes in service requirements in their work.

Tang et al. [12] proposed a dynamic VNF chain migration
scheme that first predicts the future resource requirements of
a chain by using an algorithm based on a deep belief network.
The predicted data were then used to determine the migration
policy by using a tabu search-based algorithm. However,
the authors excluded other factors, such as processing and
communication overheads, from the optimization objective.
Although the above studies focused on VNF deployment,
Guo et al. concentrated on placing an edge cloud at candidate
base stations and allocating its corresponding users [13]. The
authors formulated the task as a multi-objective optimization
problem and proposed a scheme consisting of k-means and
mixed-integer quadratic programming. However, the authors
ignored the dynamic workload of the base stations. In sum-
mary, these studies only focused on optimizing the VNF or
edge cloud deployment against static service requirements,
without considering the stochastic changes in traffic load or
user mobility.

Many researchers have leveraged the RL framework to
address the dynamic deployment of VNFs or microservices
in stochastic environments [14]–[16]. The RL framework is a
machine learning paradigm that automates decision-making
tasks directly from the experience gained through interaction
with an uncertain environment. Wang et al. [14] proposed a
dynamic coordination of microservices among hybrid clouds
in an autonomous vehicle use case. The proposed scheme
uses a tabular-based RL algorithm to dynamically select the
edge cloud and process the tasks submitted by users depend-
ing on their trajectories and current microservice deploy-
ment. Luo et al. [15] proposed a deep RL-based scheme for
automatically scaling a VNF chain distributed over several
datacenters. The proposed scheme consists of predicting the
traffic flow by using a recurrent neural network and exploiting
the prediction to determine the placement and instance size
of each VNF in the chain. However, the authors disregarded
the resource limitation of a datacenter in the reward signal,
which is common in hybrid cloud infrastructure. Our work
is related to the recent work of Schneider et al. [16], who

proposed the autonomous coordination of network services
against stochastic traffic loads. The coordination task consists
of placing and scaling service components, such as VNF or
microservices, and scheduling the traffic flow of the service.
The authors deployed a deep RL framework to learn the
probability of selecting a cloud to process incoming flows.
The present study used this framework to directly determine
VNF placement and scaling. In summary, previous studies
focused only on consumer services without considering those
used by professional users (e.g., group-based communication
services deployed on a reliable and resilient network slice).

In addition to network slicing, other key enablers of
ultralow latency in 5G are multiservice air interfaces, mobile
edge computing, and direct communication between devices.
Nadeem et al. [17] highlighted the challenges in integrating
these enablers, including resource allocation, device limita-
tions, and mobility management. Ramly et al. [18] investi-
gated the effects of various 5G radio spectra, speeds, and
frequency diversities on the latency performance of indus-
trial automation in a smart factory use case. Yousafzai et al.
[19] proposed a computational offloading framework based
on lightweight process migration for resource-intensive IoT
applications by leveraging edge cloud technology. Ali et al.
[20] reviewed the application of deepRL to optimize the com-
putation offloading function in the Internet of vehicles. The
proposed scheme automatically schedules an offloaded task
from a vehicle and allocates resources to minimize the task
latency and energy costs. The analytical results demonstrate
that the proposed scheme can support dynamic environments
with stochastic vehicle mobility. Fodor et al. [21] examined
the key challenges in implementing device-to-device com-
munications and proposed a concept that performs dynamic
clustering of out-of-coverage devices. The aforementioned
enabling technologies improve the reliability of 5G to meet
the strict latency requirements of diverse use cases.

III. PROBLEM FORMULATION
The function of the automated VNF deployment scheme is to
determine a near-optimal policy for deployment and migra-
tion of MCS VNFs. First, physical and logical networks and
traffic flow were modeled. The problem was then formulated
as an MDP, which consists of a set of states, a set of actions,
a transition function, and a reward function.

A. SYSTEM MODEL
A mobile network is represented as an undirected graph G =
(J ⊆ K,L), where J = {1, 2, . . . , J}, K = {1, 2, . . . ,K },
and L = {1, 2, . . . ,L} denote a set of edge clouds, base sta-
tions, physical backhauls, and inter-base station links, respec-
tively. An edge cloud can be hosted at one of the base stations,
which is a key requirement outlined by the Next Generation
Mobile NetworkAlliance to enhance the flexibility of 5G sys-
tems [3]. Each base station can host at most one edge cloud,
and only one ancillary critical slice can be created within a
cluster ofK base stations, as illustrated in Fig. 2. An ancillary
critical slice in a cluster comprises a set of network services.

VOLUME 10, 2022 61067

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 2. Illustration of MCS VNF deployment in 5G network slicing.
An ancillary slice can be created by deploying a distributed MCS VNF at
edge cloud to reduce the overall latency of professional users.

A network service, also known as a service function chain,
comprises ordered VNFs. It is modeled as GV =

(
N V ,LV

)
,

whereN V and LV denote a set of VNFs and virtual backhaul
and inter-base station links, respectively. The components of
each network service are theMCSVNF, the physical network
function, and the VNF of the 5G radio access network. The
MCS VNF includes 5G core network functionalities and can
be shared by all network services belonging to the critical
slice within the cluster. It was inspired by the proposed
distributed architecture [22] that enables its user and control
plane functions to be deployed in the edge cloud.

The professional users within the cluster are grouped
according to their base station and the group set is denoted
as U = K. Each traffic flow generated by a member of
the group k at its local base station is defined by its base
station identifier, time of arrival, requested data rate, and
termination time. The flow then traverses all the components
of its corresponding network service in a specified order. The
central or edge cloud that accommodates the MCS VNF is
denoted as the serving cloud. An edge cloud j ∈ J can
support several VNFs, and a physical link l ∈ L can be
mapped with several virtual ones. The delay of a physical link
depends on the bit rate and distance between the two nodes
that the link connects, where a node can be either one of the
base stations or the central cloud.

B. STATE SPACE
The system state space defines a set of all possible configu-
rations of the critical slice and the number of traffic flows of
professional users U . The MDP state space S is defined as
follows: A state sεS is a two-sized tuple (x(t),n(t)), where
x(t) indicates whether only a main critical slice is active

(x(t) = 0) or an ancillary slice has been created by deploying
the distributed MCS VNF in the edge cloud j at timestep t ,
(x(t) = j). The vector n(t) represents the total traffic flows
of the professional users U at timestep t . Subsequently, any
modification of the total traffic flow of the group k at timestep
t , nk (t) triggers the decision process of the proposed VNF
deployment scheme.

C. ACTION SPACE
The system is triggered by events that correspond to changes
in the total traffic flow. For simplicity, the events are assumed
to never occur simultaneously, and each event is treated as a
different event. The set A = {0} ∪ J represents all possible
actions that can be performed on the system based on the
current system state s. The latter comprises a triggering event
and current configuration of the critical slice. The action j
consists of deploying the MCS VNF in the edge cloud j to
serve professional users U , whereas the action 0 corresponds
to deactivating the MCS VNF in the serving cloud and rein-
stating U to the main critical slice.

D. TRANSITION FUNCTION
As a result of the action taken in each state s, the system
transitions to the next state s′ following a transition function
P(s, a, s′). The arrival of the traffic flow of the group k is
assumed to follow a Poisson process Pk with an associated
rate of λk . Upon admission to the network, the traffic flow
remains active following an exponentially distributed time
with an average 1/µk . On the basis of these assumptions, the
transition rates between system states are derived. Transitions
to the next state with the addition or removal of the flow
of group k occur at rates of λk and µk , respectively. The
transition function of the system is defined as follows: For
s = (x(t),n(t))∀a,

P(s, a, s) =

µk

v(nk (t))
, if nk (t) > 0

λk

v(nk (t))
, if nk (t) ≥ 0,

(1)

where

v (nk (t)) =
∑

k
λk + ρkµk ,

ρk =

{
1, if nk (t) > 0
0, if nk (t) = 0.

(2)

E. REWARD FUNCTION
In addition to the state transition, the system generates an
immediate reward or penalty signal that is influenced by
the action a taken in the previous state s [23]. In the VNF
deployment problem, the creation of an ancillary slice in one
of the edge clouds or the reinstatement of the professional
usersU to themain slice incurs different penalties represented
by the overall delays experienced by U and overall costs
to the agency. The overall delay od is defined as the sum
of the processing (dp), communication (dc), and migration

61068 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

(dm) delays, and the overall cost oc is the sum of the pro-
cessing (cp), communication (cc), and migration (cm) costs.
The function of the automated VNF deployment scheme is
to determine a significant policy that minimizes the long-
term penalty, that is, the negative reward associated with
professional users within a cluster. Therefore, in optimizing a
single objective, the long-term reward or return, RT is defined
as the negative sum of either od or oc over time window T .
For the optimization of multiple objectives, RT is defined as
the negative sum of the weighted normalized od and oc over
time window T ,

RT = −
∑[

(1− ω)
(

od−od,min
od,max − od,min

)
+ω

(
oc − oc,min

oc,max − oc,min

)]
, (3)

where weight ω, (0 ≤ ω ≤ 1) represents the trade-off
between achieving the two objectives.

1) PROCESSING DELAY AND COST
After the deployment of MCS VNF in the serving cloud,
the processing of multiple traffic flows from the professional
users U at this new location incurs additional costs and delays
owing to the allocation of additional processing capacity and
the availability of a limited amount of resources. By contrast,
given that the central cloud has more resources than all edge
clouds, its processing and queuing delays are considered neg-
ligible. The central cloud always hosts the main critical slice
to serve other professional users in the network. Thus, the
processing cost is ignored in the optimal policy computation
of the ancillary critical slice. Let px (t) and yx (t) denote the
average processing and queuing delays per traffic flow of
the serving cloud at time step t , gk (t) denote the average
processing capacity required by each flow of the group k at
time step t , fx denote the cost per unit of processing capacity
of the serving cloud and1t denote the time interval between
two consecutive decision processes. Then, dp and cp can be
calculated as:

dp(t) =
∑

k
(nk (t)× (px (t)+ yx (t))), (4)

cp(t) =
∑

k
(nk (t)× gk (t)×1t × fx). (5)

2) COMMUNICATION DELAY AND COST
Communication between a member of professional users U
and its MCS VNF involves several steps. First, data are trans-
mitted from the user terminal to its local base station through
a radio link. Depending on its associated network service,
data are either processed at the same location or transmitted to
the central cloud via a backhaul link or to a neighbor base sta-
tion via an inter-base station link. Therefore, the deployment
of MCS VNFs has different effects on the communication
delay and cost owing to the different transmission media
involved. An inter-base station link is established only when
the serving cloud is not located at the local base station of the
group k , and other links are always established in all cases,

even when the group k is served by the serving cloud at its
local base station. Let hk (t) denote the average radio link
delay of each flow of the group k at time step t , bk,x denote the
communication delay per traffic flow of the inter-base station
or backhaul links between the base station k and the serving
cloud,mk (t) denote the average bandwidth capacity required
by each flow of the group k at time step t , and ek,x denote the
cost per unit bandwidth capacity of the inter-base station or
backhaul links. Then, dc and cc can be calculated as:

dc(t) =
∑

k

(
nk (t)×

(
hk (t)+ bk,x

))
, (6)

cc (t) =
∑

k

(
nk (t)× mk (t)×1t × ek,x

)
. (7)

3) MIGRATION DELAY AND COST
The creation of an ancillary critical slice incurs additional
costs and delays due to the process of deploying an MCS
VNF in one of the edge clouds and migrating its user data
traffic from one location to another. The migration process
is inspired by the hierarchical MCS architecture [10], where
user data traffic can be directly forwarded to a distributed
MCS VNF without involving a control plane in the central
cloud. The deployment and migration processes follow the
procedure proposed by Clark et al. [24], which consists of
replicating the MCS VNF and its user data at a new location,
whereas those at the original location remain active. When a
certain threshold is reached, the originalMCSVNF is stopped
and the remaining user data are migrated. Upon completion,
the professional users U are then served by the new MCS
VNF in the serving cloud. For the migration delay compu-
tation, only the migration downtime is considered, that is,
the time that the professional users U take to shift from the
previous MCS VNF to the new one. For the migration cost
computation, the time required to complete the deployment
and migration processes is considered. Let vx denote the
initialization time of the serving cloud, zk (t) denote the size
of the remaining user data of the group k to be migrated,
wk (t) denote the average bandwidth capacity required by the
group k during the deployment and migration processes, and
1tm denote the total completion time of the two processes.
Then, dm and cm can be calculated as:

dm(t) = vx +
∑

i

zk (t)
wk (t)

, (8)

cm(t) =
∑

k

(
wk (t)
mk (t)

×1tm × ek,x

)
. (9)

IV. AUTOMATED VNF DEPLOYMENT SCHEME
An optimal policy for an MDP problem can be computed
efficiently by using a dynamic programming framework.
However, it requires high computational capacity for a system
with a large state space, thereby limiting its scalability [23].
The framework also requires the availability of complete
information on theMDPmodel, including the transition func-
tion, which is typically unavailable in real-world scenarios.
By contrast to dynamic programming, the RL framework
does not require a perfect MDP model.

VOLUME 10, 2022 61069

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

A. VALUE ITERATION
Algorithm 1, which is a dynamic programming-based algo-
rithm known as value iteration, was first used. It implements
the Bellman optimality equation as an update rule, which can
be expressed as

Q (s, a)=R (s, a)+
∑

s′
P
(
s, a, s′

)
max
a′∈A

Q
(
s′, a′

)
. (10)

The algorithm converges to an optimal policy for discounted
finite MDP problems [23]. The Bellman optimality equation
states that the value of taking action a in state s under an
optimal policy must equal the expected long-term reward for
the best action. Algorithm 1 iteratively improves the approx-
imations of the value function Q (s, a), which estimates the
expected long-term reward for all state-action pairs. On the
basis of the system model in Section III, the environment
is a finite MDP because its state space S and action space
A are finite. The environment dynamics, that is, the arrival
rate λk and departure rate µk of the traffic flows of each
group are assumed to be available. The transition function
P(s, a, s) is then derived and subsequently exploited in the
value function approximation step. Algorithm 1 converges
to an optimal policy when the values of two consecutive
approximated value functions differ only by a small amount,
denoted by θ .

Algorithm 1 Value Iteration
1: Initialize the vector Q(s, a) = 0.
2: Initialize the iteration step to 1.
3: Initialize 1 to 0.
4: while 1 > θ do
5: Update the vector q = Q(s, a).
6: Update the vector Q(s, a) using (10)
7: Update 1 = max(1, |q− Q(s, a)|).
8: end while

B. Q-LEARNING
For the RL-based scheme, the transition function P(s, a, s′)
of the MDP model was assumed to be unknown. Algorithm 2
is a Q-learning algorithm that learns an optimal policy
through interactions between its agent and Markovian envi-
ronment. The convergence of Q-learning to an optimal policy
is guaranteed if its learning rate parameter and Markovian
environment satisfy certain conditions, as demonstrated by
Watkins et al. [25]. However, this algorithm only supports
discrete state and action spaces. A Q-learning agent works
by successively selecting an action a in state s and observes
a reward r and the next state s′, as illustrated in Fig. 3. The
Q-learning agent then updates its estimation of the expected
long-term reward (i.e., the Q-value) of taking action a in
previous state s. The update is performed by using a constant
learning rate α and discount factor γ as follows:

Q (s, a) = Q (s, a)+ α
[
r + γ max

a′∈A
Q
(
s′, a′

)
− Q (s, a)

]
.

(11)

FIGURE 3. High-level view of a Q-learning agent and its components. The
agent learns an optimal policy through the experience gained from
successive interactions with a Markovian environment.

The learning rate assigns more weight to recent rewards,
and the discount factor indicates the present value of future
rewards [23]. Q-learning is a tabular-based method because
the Q-values for all possible state-action pairs are stored in a
table. These values are evaluated to determine the action in
each state, where the agent always selects the one that yields
the highest Q-value in the case of a greedy policy. Q-learning
uses an E-greedy policy where the agent applies the greedy
policy most of the time and selects an action randomly with
a small probability E . This policy allows the agent to learn
an optimal policy by exploiting its knowledge of the most
rewarding actions and discovering such knowledge by explor-
ing other possible actions in each state.

Algorithm 2 Q-Learning
1: Initialize the vector Q(s, a) = 0.
2: while episode number < maximum number of episodes

do
3: Initialize the state.
4: Initialize the iteration step to 1.
5: while s is not a terminal state do
6: Using ε-greedy policy, select an action a in state s.
7: Observe a reward r and the next state s′.
8: Update the old estimate of Q(s, a) with the new

sample using (11).
9: end while

10: end while

C. DEEP Q-NETWORK
Algorithm 3 is used for the deep RL-based scheme with the
assumption of an incomplete MDPmodel. A deep Q-network
(DQN) agent [26] supports discrete and continuous state
spaces, but continuous action spaces are not supported.
A DQN agent learns an optimal policy by successively select-
ing an action a in state s, followed by the observation of
a reward r and the next state s′. By contrast to Q-learning,
an agent does not store an individual Q-value for each state-
action pair in a lookup table. It uses a neural network to
approximate a value function that can encode the Q-values
for all the state-action pairs. The neural network is desig-
nated as a critic network Q

(
s, a|θQ

)
, and its parameters θQ

are updated by minimizing the loss function L between its
approximated Q-values and target values by using an opti-
mization algorithm, such as gradient descent as follows:

L =
1
M

∑M

i

(
yi − Q

(
si, ai|θQ

))2
, (12)

61070 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

where

yi =

ri, if s′i is a terminal state
ri + γ max

a′∈A
Q′
(
s′i, a′|θQ′ , αQ′ , βQ′

)
,

otherwise.

(13)

The target Q-values are obtained by using a target critic net-
work Q′

(
s, a|θQ′

)
, where its parameters θQ′ are periodically

updated with the critic network parameters θQ or at every time
step with a smoothing factor. This approach improves DQN’s
stability against divergence compared with other off-policy
algorithms with function approximation and bootstrapping,
such as Q-learning with linear function approximation [27].
The DQN agent learns faster than gradient-based conver-
gent methods, such as residual gradient (RG) algorithm that
uses gradient descent to minimize the loss of mean squared
Bellman error, LMBSE [28]. Wang et al. [29] discussed the
inefficiencies in RG’s learning behavior, which increased its
learning time to O

(
M2
)
, quadratic in the problem size. The

worst-case computational complexity of DQN is alsoO
(
M2
)

because the loss function L of DQN is equivalent to LMBSE
every time its target network is copied from its critic network.

Algorithm 3 Deep Q-Network (DQN)
1: Initialize the size of the experience buffer to N .
2: Initialize the critic network Q(s.a|θQ) with random

parameter values θQ.
3: Initialize the target critic network Q′(s, a|θQ′) with the

same parameter values θQ′ = θQ.
4: while episode number < maximum number of episodes

do
5: Initialize the state.
6: Initialize the iteration step to 1.
7: while s is not a terminal state do
8: Using ε-greedy policy, select an action a in state s.
9: Observe a reward r and 1 he next state s′.
10: Store the experience (s, a, r .s′) in the experience

buffer.
11: Sample a random minibatch of M experiences

(si, ai, ri, s′i) in the experience buffer.
12: Set the value function target yi using (13).
13: Update the critic network parameters θQ by one-step

minimization of the loss L across all sampled experiences
using (12).

14: Update the target critic network parameters θQ′
either at every timestep or periodically.

15: end while
16: end while

The DQN agent enhances data efficiency by fully exploit-
ing past experiences using the experience replay technique,
as illustrated in Fig. 4. The use of neural networks provides
inherent support for parallelism [30] and improves DQN
scalability to cater to systems with large state and action
spaces. This pitfall can be uncovered by generalizing the
experiences learned from observed states and exploiting them

FIGURE 4. Overview of the experience replay technique that pools a
sequence of experiences over many episodes into a buffer. Subsequently,
a random minibatch of experiences is sampled and used to compute the
target Q-values and to update the critic network parameters.

for new states with similar features. The critic network of the
DQN agent is constructed by using a neural network with
two input paths representing the system state and action, and
a single output path representing the approximated Q-value.
The input paths consist of two fully connected hidden layers
with 64 nodes for the system state and a single fully connected
hidden layer with 64 nodes for the action. The two paths are
then concatenated into a single path consisting of two fully
connected hidden layers with 256 nodes. The rectified linear
unit (ReLU) and adaptive moment estimation (ADAM) are
defined as the activation function and optimization algorithm,
respectively.

D. DUELING DQN
Algorithm 4 is a dueling DQN agent [31] that leverages the
efficient learning of a state value function to find an optimal
policy in an environment where the number of actions is
large. To achieve this, a dueling DQN agent separates the
final hidden layer of its critic network into two paths: the first
path handles the approximation of the state value function,
V (s|θ, β), and the second approximates a function known as
the advantage function, A (s, a|θ, α). The parameters of the
first and second paths are represented by β and α, respec-
tively, and θ represents the parameters of the remaining lay-
ers of the critic network. The loss function L is defined as
follows:

L =
1
M

∑M

i

(
yi − Q

(
si, ai|θQ, αQ, βQ

))2
, (14)

where

yi =

ri if s′i is terminal
ri + γ max

a′∈A
Q′
(
s′i, a′|θQ′ , αQ′ , βQ′

)
otherwise.

(15)

The advantage function indicates the importance of taking
action a in state s, relative to the other possible actions. The
advantage value is obtained by subtracting the value of being
in state s from the value of taking action a in that state. The
two paths are then combined in a proceeding aggregation
layer to approximate the action value functionQ (s, a|θ, α, β)
that encodes the Q-values for all possible state-action pairs.
The advantage values averaged over all possible actions were

VOLUME 10, 2022 61071

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

Algorithm 4 Dueling DQN
1: Initialize the size of the experience buffer to N .
2: Initialize the critic network Q(s, a|θQ, αQ, βQ) with ran-

dom parameter values θQ, αQ, βQ.
3: Initialize the target critic network Q′(s, a|θQ′ , αQ′ , βQ′)

with the same parameter values θQ′ = θQ, αQ′ = αQ,
βQ′ = βQ.

4: while episode number < maximum number of episodes
do

5: Initialize the state.
6: Initialize the iteration step to 1.
7: while s is not a terminal state do
8: Using ε-greedy policy, select an action a in state s.
9: Observe a reward r and the next state s′.

10: Store the experience (s, a, r, s′) in the experience
buffer.

11: Sample a random minibatch of M experiences
(si, ai, ri, s′i) in the experience buffer.

12: Set the value function target yi using (15).
13: Update the critic network parameters θQ by one-step

minimization of the loss L across all sampled experiences
using (14).

14: Update the target critic network parameters θQ′ , αQ′ ,
βQ′ either at every timestep or periodically.

15: end while
16: end while

further subtracted from the estimated advantage value of a
state-action pair to improve the agent’s stability. The mod-
ified critic network is known as a dueling network and can
be trained by using the same techniques used for a DQN
agent, such as experience replay, target network, and double
DQN. The computational complexity of a dueling DQN agent
is O

(
M2
)
, quadratic in the problem size due to the loss

minimization.
The dueling network of the agent is constructed by using

a neural network with an input path representing the sys-
tem state and an output path representing the approximated
Q-value. The hidden layers include three fully connected
layers with 64 nodes, followed by two fully connected layers
with 256 nodes. The final layer outputs are then separated
into two paths, handling the approximation of the state value
function and advantage function. The two paths are combined
in the aggregation layer. This architecture was inspired by
the work of Wang et al. [31], who demonstrated the agent’s
performance in learning the optimal policies in the Atari
domain. The ReLU andADAMwere defined as the activation
function and optimization algorithm, respectively.

V. PERFORMANCE EVALUATION
An automated VNF deployment scheme was implemented
by using MATLAB R2019b and Python 3.6.4 with essen-
tial libraries, including NumPy, Matplotlib, Random, Ten-
sorFlow, and Keras. Its performance was evaluated against
baselines through comprehensive simulations. The OpenAI

Gym toolkit was used to construct the MDP environment in
Python. For geospatial information analysis of a real-world
dataset, Quantum Geographical Information System (QGIS)
3.16.3 was used.

A. EVALUATION SETUP
1) EVALUATION METRICS
We selected the average return as the evaluation metric due
to its superior stability compared with the highly biased
maximum average and maximum returns [32]. To report the
results, we used the policy optimization view of deep RL
agents, which shows the return optimization of a single target
policy over several learning episodes rather than the online
learning view that considers the entire learning process [33].
On the basis of the available data, the learning process con-
sisted of 1400 and 180 episodes (i.e., days) for the simu-
lated and real-world datasets, respectively. For each scenario
involving a real-world dataset, five simulation trials were
conducted by using different edge-cloud clusters. The aver-
age return of each deep RL agent across the five trials with a
95% confidence interval was then represented. Each return
was averaged for the last 60 evaluation episodes. We per-
formed significance testing consisting of Welch’s t-test and
bootstrap confidence interval test on the final average return
to further illustrate the performance range of the proposed
scheme [34].

2) SIMULATED INPUT DATASET
A simple scenario with two edge clouds and two professional
user groups with varying flow arrival rates of λk and active
periods of 1/µk for all groups was considered. The two
edge clouds have the same delay characteristics of 5 ms for
the average processing and queuing delays per traffic flow.
The average radio link delay of each flow of the group k
at timestep t , hk (t) is 5 ms. The communication delays per
traffic flow of the inter-base station and backhaul links of
the base station k , bk,x are 15 and 30 ms, respectively. The
initialization time of an edge cloud is 40 ms, and the size of
the remaining user data of the group k to be migrated, zk (t)
is 10 Mb per traffic flow. The average bandwidth capacity
required by each flow of the group k during the entire deploy-
ment and migration processes, wk (t) is 250 Mb/s, and the
total process completion time, 1tm is equal to 9600 ms per
traffic flow.

The average processing capacity required by each flow of
the group k at time step t , gk (t) is 1000 Hz and the cost per
1000 Hz processing capacity of an edge cloud, fx is 1 per
min. The average bandwidth capacity required by each flow
of the group k at timestep t , mk (t) is 0.1 Mb/s, and the cost
per 0.1 Mb/s bandwidth capacity of the inter-base station
and backhaul links of the base station k , ek,x is 0.75 and
1.5 per min, respectively. On the basis of the parameters
defined in Section III, we simulated our input dataset that
contained the daily traffic flow of the groups 1 and 2 for a
period of 1400 days. Each day is represented by an episode

61072 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

of 1440 timesteps, where each timestep represents 1 min
in a real-world scenario. We computed the transition proba-
bilities of the simulated input dataset P(s, a, s) by counting
the number of occurrences of each possible next state for
a given current state. The results confirm that the transition
probabilities of the simulated data match those derived from
the system model.

3) SHANGHAI TELECOM DATASET
The performance of the proposed scheme was evaluated by
using a real-world dataset from the Shanghai Telecommobile
network. On the basis of this dataset, Wang et al. con-
ducted experiments to evaluate their proposed solutions for
managing the placement of edge clouds in smart cities [35]
and service recommendations in mobile edge computing
[36]. Dulac-Arnold et al. [37] highlighted the key challenges
in implementing deep RL agents in real-world scenarios,
including the need for sample-efficient algorithms and robust
approaches to handle partially observable environments. The
Shanghai Telecom dataset contains records of Internet access
from 9481 mobile users for a period of six consecutive
months, where each record indicates the start and end times
of a user connection. From a total of 3233 base stations,
we selected 2740 base stations located in the metropolitan
area of Shanghai. We then grouped them into 274 clusters of
varying sizes to simulate the grouping of professional users in
accordance with the hypothetical areas of operation. We used
the k-means clustering function of QGIS, which assigns each
base station to the cluster with the nearest mean. In each
cluster, we assume that each base station hosts an edge cloud,
professional users generate only 40% of the traffic flow,
and the remaining flows originate from commercial users.
We retained the definition of the parameters associated with
network delays in the simulated dataset.

4) DEEP RL HYPERPARAMETERS
Henderson et al. [33] discussed several factors that affect the
performance and reproducibility of deepRL agents, including
hyperparameter tuning, network architecture selection, and
random seed definition. These predetermined factors are cru-
cial for avoiding the misinterpretation of results and ensuring
good experimental practice. We first investigated the effects
of batch size and network architecture on agent performance
by modifying only the hyperparameters of interest, while
setting others to default values. We used a batch size of
256 for the default values of the two agents. The network
architecture, activation function, and optimization algorithm
defined in Sections IV-C and IV-D were used as the default
configurations.

We set the following values for the remaining hyperpa-
rameters: 1) smoothing factor for target critic updates =
0.001, 2) buffer size= 10,000, 3) discount factor= 0.99, and
4) probability threshold for epsilon-greedy exploration =
0.99, with a decay rate of 0.01. We then varied the batch
sizes from 128 to 512 while setting the learning rate of
DQN and dueling DQN agents to 0.05 and 0.01, respectively.

FIGURE 5. DQN agent’s performance for different values of learning rate.
Its convergence to an optimal policy improves with the increase in the
learning rate because large learning rates allow the agent to update its
critic network’s parameters faster.

FIGURE 6. DQN agent’s performance for different random seeds. Its
convergence to an optimal policy is susceptible to the seed used to
initialize the weight of its critic network.

For the network architecture of the two agents, we varied
the first three hidden layers from 32 to 128, whereas the
remaining layers ranged from 128 to 512. Table 1 shows
the final average return over the last 60 evaluation episodes
and the standard errors across the five trials for different
hyperparameter configurations. Using the best configuration
set for each agent, we ran another ten trials with learning
rates ranging from 0.05 to 0.0005 and five random seeds. The
corresponding learning curves of the DQN agent are shown
in Figs. 5 and 6. The best-performing DQN and dueling
DQN agents with learning rates of 0.05 and 0.01, respectively
and random seed equals to ten were selected for the next
evaluation step on the remaining clusters.

5) BASELINE ALGORITHMS
The performance of the RL-based scheme was compared
with the benchmark produced by the value iteration algorithm
and the two baselines provided by the one-step look-ahead

VOLUME 10, 2022 61073

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

TABLE 1. Effects of batch size and network architecture.

(OSLA) [14] and fixed-location algorithms. Similar to RL
agents, OSLA analyzes the overall delays and costs in select-
ing the best location to deploy an MCS VNF. However,
it only considers the short-term reward of each state-action
pair rather than the expected long-term reward used by the RL
agents. The fixed-location algorithm initially selects a ran-
dom edge cloud for the deployment of the MCS VNF during
the creation of the ancillary critical slice and always retains
the same location although the total traffic flow changes
during the slice reconfiguration phase.

B. OPTIMALITY
1) DELAY MINIMIZATION
We began by evaluating the performance of our scheme
in terms of learning an optimal policy through extensive
comparisons with the value iteration and baseline algorithms
using the simulated input dataset. The traffic pattern of this
dataset was stationary because the flow arrival rate and dura-
tion of its groups remained the same during the entire sim-
ulation period. We fixed the flow arrival rate λ1 at three
events per day while varying the values of λ2 from six to
30 events for the same period. We set the active flow period
to 20 min for all 1/µk . For our simulations, we first focused
on minimizing the overall delay od because this is the utmost
requirement of a critical slice. Fig. 7 illustrates the average
return resulting from each algorithm for different ratios of
flow arrival rates between groups 1 and 2. The results show
that the value iteration surpasses the Q-learning and DQN
agents by 5.4% and 3.5%, respectively, on average. The
value iteration converges to the exact optimal policies in this
scenario because the MDP environment is finite and the com-
plete information on the MDPmodel, including the transition
function, is available [23]. The Q-learning agent outperforms
the OSLA and fixed-location algorithms by 38.65% and
60.60%, respectively, on average. The DQN agent performs
slightly better than the Q-learning agent, with an average
improvement of 39.94% and 61.56% over the OSLA and
fixed-location algorithms, respectively.

The performance gaps between the baselines and our
scheme enlarge with the increase in the ratio between λ1 and
λ2 because the larger the traffic flow rate of a group, the
higher its total number of accumulated traffic flows during the
majority of the time. Our scheme prioritizes the edge cloud 2
in the VNF deployment policy, resulting in lower accumu-
lated communication delays and fewer occurrences of VNF
migration tasks. By contrast, the OSLA algorithm performs

FIGURE 7. Delay minimization with respect to the traffic arrival ratio. The
performance of the RL agents is comparable to that based on value
iteration. The performance gaps between the baselines and the agents
enlarge with the increase in the traffic arrival ratio.

the migration task more frequently because it favors an edge
cloud that can provide the best immediate reward at each
iteration based on the current system state. The fixed-location
algorithm performs the worst because it always prefers a
random edge cloud when the total traffic flow is greater
than zero. In conclusion, the proposed scheme automatically
learns near-optimal policies in dynamic environments with
stationary traffic patterns.

2) COST MINIMIZATION
In real-world VNF deployments, it is common for a public
safety agency to optimize another objective, such as reducing
its overall costs oc. In this scenario, the flow duration was
maintained at 20 min, and the flow arrival rate was fixed at
three and 12 flows per day for groups 1 and 2, respectively.
The inclusion of the time interval between two consecutive
decision processes 1t in the reward calculation transforms
the discrete-time VNF deployment problem into a continuous
problem, known as a semi-MDP. Thus, the value iteration
algorithm was not used because it requires computationally
expensive transformations [38]. Fig. 8 illustrates the aver-
age return resulting from each algorithm for different ratios
of flow arrival rates between groups 1 and 2. The results
show that the Q-learning and DQN agents outperform the
fixed-location algorithm by 33.44% and 33.88%, respec-
tively, on average. Their performance is comparable to that
of OSLA, which has the advantage of knowing the 1t value
one step ahead.

In this scenario, RL agents always prioritize the edge
cloud 2 in their VNF deployment policies, except when traffic
flows are generated only by the group 1. TheOSLA algorithm
also favors the edge cloud 2. However, it selects either the
central cloud or the current serving cloud because they offer
the same immediate reward when the total traffic flows of
both groups equalize, return to zero, or exceed a certain limit.
Despite the high frequency of migration tasks, the resulting
policy is optimal because the migration cost is compensated
by low processing and communication costs. In conclusion,

61074 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 8. Cost minimization with respect to the flow arrival ratio. The
performance of the RL agents is comparable to that of the OSLA
algorithm. the fixed-location algorithm performs the worst because it
prioritizes random edge clouds.

our scheme can automatically learn the best policy for a
continuous-time problem by relying only on current obser-
vations compared with OSLA, which requires time interval
information 1t one step ahead.

C. EXTENSIBILITY
We evaluated the extensibility of our scheme in terms of sup-
porting multiple objectives using the simulated input dataset.
In the computation of the expected return RT , we considered
the overall delays od and costs oc. Weight ω represents the
trade-off between achieving the two opposing objectives.
In our case, minimizing the overall delays when the traffic
load is high may cause the agent to favor the central cloud
over one of the edge clouds due to the low processing capacity
of the latter and the high delay in the migration task. How-
ever, this decision may not be the most economical because
edge clouds incur low communication costs that are further
reduced if the cloud with the most traffic flows is selected.
The high communication cost of the central cloud is exacer-
bated when the network is congested. Therefore, the scheme
must determine an optimal policy that balances these objec-
tives in accordance with the different weight configurations.

For our simulations, we retained the best-performing
Q-learning andDQN agents in Section V-A and variedweight
ω accordingly. We fixed the flow arrival rate λ1 at three
events per day, λ2 at 12 events for the same period, and an
active flow period of 20 min for all 1/µk . Fig. 9 illustrates
the weighted normalized average return resulting from each
algorithm for different values of ω. The results show that the
Q-learning agent outperforms the OSLA and fixed-location
algorithms by 35.55% and 51.79%, respectively, on average.
The DQN agent performs slightly better than the Q-learning
agent, with an average improvement of 35.80% and 52.16%
over the OSLA and fixed-location algorithms, respectively.
In conclusion, our scheme can support multiple objectives
common in real-world scenarios.

FIGURE 9. Cost and delay minimizations with respect to the weight ω. The
performance gaps between the baselines and the agents decrease with
the increase in the weight of the overall costs.

FIGURE 10. Average return of the Q-learning and DQN agents for clusters
of two edge clouds. The former converges to an optimal policy at the
470th episode, whereas the latter requires additional 370 episodes to
achieve the same target.

D. ADAPTABILITY
We evaluated the adaptability of our scheme to dynamic
changes in traffic patterns by using simulated and real-
world traffic datasets. We focused on minimizing the overall
delays od and started by analyzing the convergence rate of
our scheme. Fig. 10 illustrates the learning curves of the
Q-learning and DQN agents on the simulated input dataset.
The average returns of the two agents across the five trials,
with 95% confidence intervals, are presented. The results
show that the DQN agent outperforms Q-learning by an
average of 44%. This result is obtained because Q-learning
updates only a single Q-value at each iteration, that is, for
the current state action pair that it experiences, whereas DQN
updates the critic network parameters for all the state-action
pairs in each iteration. The DQN agent is more sample effi-
cient because it can fully exploit its experience through the
experience replay technique. Significance testing consisting
of Welch’s t-test and bootstrap confidence interval test across
the entire training distribution yields a p-value of 0.6319 and
a bootstrap confidence interval of [−162,−43], respectively.

VOLUME 10, 2022 61075

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 11. Average return of the DQN, OSLA, and fixed-location
algorithms for clusters of two edge clouds. The difference between the
algorithms’ empirical means increases after the 12th episode, indicating
that DQN can learn the characteristics of stochastic traffic patterns and
subsequently finds an optimal policy.

We then measured the adaptability of our scheme on non-
stationary traffic patterns from the real-world Shanghai Tele-
com dataset. From 274 clusters, we selected five clusters
with similar sizes of two edge clouds. By contrast to the
simulated input dataset, which represents traffic patterns with
static flow arrival rates of λk and active periods of 1/µk ,
real-world traffic flow may randomly switch between several
arrival rates and active periods at different times of the day.
We used the best-performing DQN agent in Section V-A for
the next evaluation step on the remaining four clusters with
different traffic patterns. The value iteration algorithm was
not used in this scenario because the environment dynam-
ics, that is, the arrival rate and active period of the traffic
flows are unavailable. Thus, the transition function cannot
be derived to establish a perfect MDP model that is required
by the algorithm [23]. Fig. 11 illustrates the average return
of the DQN, OSLA, and fixed-location algorithms across
the five trials, with 95% confidence intervals. The results
show that the DQN agent finds an optimal policy that pri-
oritizes edge clouds with the most accumulated traffic flows
in the long term. The significance testing of the final aver-
age return between DQN and OSLA results in a p-value of
0.1766 and a bootstrap confidence interval of [953, 1968],
whereas the test between DQN and fixed-location results in
a p-value of 0.1142 and a bootstrap confidence interval of
[1209, 1958]. In conclusion, the proposed scheme can support
dynamic environments with non-stationary traffic patterns at
the expense of longer training periods.

The scalability and extensibility of the DQN agent in sup-
porting multiple objectives were evaluated using the Shang-
hai Telecom dataset. The best-performing DQN agent was
retained, and the weight ω was fixed at 0.5, across the five
trials. In this case, the agent must balance the overall delays
and costs minimizations. The weighted normalized average
returns of the DQN and OSLA algorithms across five tri-
als with a 95% confidence interval are shown in Fig. 12.

FIGURE 12. Average return of the DQN and OSLA algorithms for clusters
of two edge clouds. The empirical means of both algorithms equalize
after the 120th episode, indicating that their performance is comparable
after the DQN converges to a near-optimal policy.

Although OSLA has the advantage of knowing the 1t value
one step ahead, the DQN agent can learn these characteristics
by successively interacting with the environment. The signif-
icance testing between DQN and OSLA results in a p-value
of 0.9310 and a bootstrap confidence interval of [−0.3933,
0.3902]. In conclusion, the DQN agent can support multiple
objectives in a nonstationary environment at the expense of
longer convergence time.

E. SCALABILITY
We analyzed the scalability of our scheme to cater to large-
scale clusters with many edge clouds while focusing on min-
imizing the overall delay od . For this purpose, we selected
two sets of five clusters from the Shanghai Telecom dataset.
Each cluster in the first and second sets contains five and
ten edge clouds, respectively. We also used a dueling DQN
agent in this scenario. Fig. 13 illustrates the average returns
with a 95% confidence interval of the DQN, OSLA, and
fixed-location algorithms across the five trials for clusters
of five edge clouds. The DQN agent improves over OSLA
only after the 92nd episode, indicating that its performance
decreases with the increase in cluster size because a larger
cluster size produces a higher dimension of the state and
action spaces. Consequently, the number of state-action pairs
increases, thereby requiring prolonged training to determine
an optimal policy. The significance testing between DQN and
OSLA results in a p-value of 0.2301 and a bootstrap confi-
dence interval of [−37, 666], and the test between DQN and
fixed-location results in a p-value of 0.0003 and a bootstrap
confidence interval of [12587, 16533].

TheVNF deployment policy determined by the DQN agent
for the last episode of the second cluster of the five edge
clouds is shown in Fig. 14. The DQN agent can learn the
environment’s dynamics in this scenario. When a single traf-
fic flow is generated by the group 3 at the 459th minute, the
DQN agent prioritizes the edge cloud 1 over other locations

61076 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 13. Average return of the DQN, OSLA, and fixed-location
algorithms for clusters of five edge clouds. The fixed-location algorithm
performs the worst because of the high traffic in large clusters, which
increases the overall delays if VNF is not deployed in the edge cloud with
the most traffic flows.

FIGURE 14. VNF deployment policy of the DQN algorithm in a cluster of
five edge clouds. The DQN agent always prioritizes the edge clouds 1 and
2 in its VNF deployment policy.

because this action yields the highest Q-value, albeit with a
lower processing capacity than the central cloud and a high
initial migration cost. This location is retained even when the
traffic flows return to zero shortly. The agent migrates the
VNF to the edge cloud 2 when its group generates moderate
traffic flows for a long period. In the long term, this pol-
icy results in lower accumulated communication delays and
fewer occurrences of VNF migration tasks due to the heavy
traffic flows generated by the group 1 that is, from the 649th
to 936th minute and the moderate traffic flows generated
intermittently by the group 2 that is, from the 937th to 1060th
minute. By contrast, the OSLA algorithm always prefers the
central cloud over other locations because it offers the best
immediate reward owing to its high processing capacity and
exclusion of migration delays.

For the clusters with ten edge clouds, the average returns
of the DQN, dueling DQN, and OSLA algorithms across the
five trials with a 95% confidence interval are illustrated in

FIGURE 15. Average return of the DQN, dueling DQN and OSLA
algorithms for clusters of ten edge clouds. The dueling DQN agent
improves over other algorithms after the 85th episode, which
demonstrates its performance in finding an optimal policy in an
environment where the number of actions is large.

Fig. 15. The DQN agent’s performance deteriorates consider-
ably because the higher the number of edge clouds in a cluster,
the faster its total traffic flow changes. Consequently, the
time interval between two consecutive decision processes is
reduced, and the effect of the long-term reward is diminished.
The pool of candidates for the serving cloud enlarges with
the increase in the number of edge clouds with similar flow
arrival rates in a cluster. Consequently, the action yielding the
highest Q-value fluctuates among these candidates, thereby
affecting the resulting DQN agent policy. The dueling DQN
agent performs the best in this scenario. The significance
testing between dueling DQN and OSLA results in a p-value
of 0.6706 and a bootstrap confidence interval of [266, 3323],
and the test between dueling DQN and DQN results in a
p-value of 0.3142 and a bootstrap confidence interval of
[3144, 6108].

The VNF deployment policy determined by the dueling
DQN and OSLA algorithms for the last episode of the second
cluster of ten edge clouds is shown in Fig. 16. The dueling
DQN agent always prioritizes the corresponding edge clouds
with the highest traffic flows in its VNF deployment pol-
icy. This result is achieved because of the agent’s efficient
approach to learn an advantage function that indicates the
importance of taking an action in a state, relative to other
possible actions. The agent prioritizes the edge cloud 3 most
of the time and migrates the VNF several times to the edge
cloud 4 when its group generates high traffic flows, that
is, from the 419th to 1329th minute. In the long term, this
policy results in lower accumulated communication delays
and fewer occurrences of VNF migration tasks due to the
heavy traffic flows generated by the group 3 that is, from the
626th to 1437th minute.

By contrast, the OSLA algorithm only prefers the edge
clouds 3 and 4 during high traffic flows.When the total traffic
flow returns to zero, the central cloud is selected because

VOLUME 10, 2022 61077

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

FIGURE 16. VNF deployment policies of the dueling DQN and OSLA
algorithms in a cluster of ten edge clouds. The DQN agent always
prioritizes the edge clouds 3 and 4 while the OSLA algorithm only prefers
the two edge clouds during high traffic flows.

TABLE 2. Computational load in different scenarios.

it offers the lowest processing and communication delays.
This location is retained during low traffic flows because
it excludes the high delay in the initial migration task. The
DQN agent cannot learn the environment’s dynamics in this
scenario and always prioritizes the central cloud in its VNF
deployment policy. We measured the computational load
incurred by each agent to complete one iteration for different
scenarios. The results shown in Table 2 were obtained with
an Intel Core i5 2.5 GHz CPU platform. The computational
times are very low, and dueling DQN outperforms DQN by
an average of 56.41%. In conclusion, our scheme leveraging
a dueling DQN agent can cater to large-scale scenarios with
non-stationary traffic patterns and many suitable deployment
locations.

VI. CONCLUSION
Network slicing improves 5G flexibility and scalability in
supporting various use cases on common infrastructure, such
as critical communications for public safety agencies. How-
ever, it introduces new challenges in terms of orchestrat-
ing the diverse resources of a logical network, especially
within a hybrid cloud environment consisting of central and
edge clouds. Orchestration tasks include the deployment of
a slice-constituent VNF during the creation and reconfig-
uration phases of a network slice. This study proposed a
deep RL-based scheme to best determine a deployment pol-
icy from the perspective of a critical slice that offers group
communication services to professional users. To this end,
a VNF deployment task was presented, and the problem
was formulated as an MDP. Subsequently, a deep RL-based

schemewas designed tominimize the overall delays and costs
of professional users within the clusters of edge clouds.

The performance of the proposed scheme was evaluated
against a dynamic programming-based scheme and baselines
by using simulated and real-world traffic datasets. The results
show that, on average, the proposed scheme outperforms the
OSLA and fixed-location algorithms in terms of the weighted
sum of overall delays and costs by 35.80% and 52.16%,
respectively, in dynamic environments with stationary traffic
patterns. For delay minimization, the integration of a DQN
agent enhances the adaptability of the scheme to support non-
stationary traffic patterns. Welch’s t-test between DQN and
OSLA for clusters of five edge clouds results in a p-value
of 0.2301, whereas the test between DQN and fixed-location
results in a p-value of 0.0003. Further integration with a
dueling DQN agent enables the scheme to support large
scale environments. Welch’s t-test between the dueling DQN
and DQN agents for clusters of ten edge clouds results in a
p-value of 0.3142. However, deep RL agents require proper
hyperparameter tuning, network architecture selection, and
random seed definition to ensure optimal performance in real-
world scenarios. In our future work, we intend to investi-
gate the application of recent progress in deep RL, which
includes state-of-the-art algorithms with high sample effi-
ciency and advanced techniques that provide greater capabil-
ity for continuous-time problems.

REFERENCES
[1] Study on Management and Orchestration of Network Slicing for Next

Generation Network (Release 15), document Rec. TR 28.801 V15.1.0,
3GPP, Jan. 2018.

[2] A. H. Kelechi,M. H. Alsharif, A.M. Ramly, N. F. Abdullah, and R. Nordin,
‘‘The four-C framework for high capacity ultra-low latency in 5G net-
works: A review,’’ Energies, vol. 12, no. 18, p. 3449, Sep. 2019.

[3] Description of Network Slicing Concept V1.0, NGMNAlliance, Frankfurt,
Germany, V1.0, Jan. 2016.

[4] 5G White Paper V1.0, NGMN Alliance, Frankfurt, Germany, Feb. 2015.
[5] A. Othman and N. A. Nayan, ‘‘Public safety mobile broadband system:

From shared network to logically dedicated approach leveraging 5G net-
work slicing,’’ IEEE Syst. J., vol. 15, no. 2, pp. 2109–2120, Jun. 2021.

[6] A. Othman and N. A. Nayan, ‘‘Efficient admission control and resource
allocation mechanisms for public safety communications over 5G network
slice,’’ Telecommun. Syst., vol. 72, no. 4, pp. 595–607, Dec. 2019.

[7] A. Jarwan, A. Sabbah, M. Ibnkahla, and O. Issa, ‘‘LTE-based public
safety networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1165–1187, 2nd Quart., 2019.

[8] Technical Specification Group Services and System Aspects; Mission
Critical Push to Talk (MCPTT) Over LTE; Stage 1 (Release 13), docu-
ment Rec. TS 22.179 V13.0.0, 3GPP, Dec. 2014.

[9] ‘‘A discussion on the use of commercial and dedicated networks for
delivering mission critical mobile broadband services,’’ Crit. Commun.
Assoc., Newcastle upon Tyne, U.K., White Paper 1.2, Feb. 2017.

[10] R. Solozabal, A. Sanchoyerto, E. Atxutegi, B. Blanco, J. O. Fajardo, and
F. Liberal, ‘‘Exploitation of mobile edge computing in 5G distributed
mission-critical push-to-talk service deployment,’’ IEEE Access, vol. 6,
pp. 37665–37675, 2018.

[11] D. G. Estevez et al., ‘‘Deliverable D4.2: Final design and evaluation
of resource elasticity framework version 1.0,’’ 5G-MoNArch, 5G Infras-
truct. Public Private Partnership, Heidelberg, Germany, Tech. Rep. D4.2,
Apr. 2019.

[12] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen, ‘‘Virtual network
function migration based on dynamic resource requirements prediction,’’
IEEE Access, vol. 7, pp. 112348–112362, 2019.

61078 VOLUME 10, 2022

A. Othman et al.: Automated Deployment of VNF in 5G Network Slicing Using Deep RL

[13] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C. Hsu, ‘‘User allocation-
aware edge cloud placement in mobile edge computing,’’ Software, Pract.
Exper., vol. 50, no. 5, pp. 489–502, May 2020.

[14] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, ‘‘Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,’’ IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp. 939–951, Mar. 2021.

[15] Z. Luo, C. Wu, Z. Li, and W. Zhou, ‘‘Scaling geo-distributed network
function chains: A prediction and learning framework,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 8, pp. 1838–1850, Aug. 2019.

[16] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, ‘‘Self-driving network and service coordination
using deep reinforcement learning,’’ in Proc. 16th Int. Conf. Netw. Service
Manage. (CNSM), Nov. 2020, pp. 1–9.

[17] L. Nadeem, M. A. Azam, Y. Amin, M. A. Al-Ghamdi, K. K. Chai,
M. F. N. Khan, and M. A. Khan, ‘‘Integration of D2D, network slicing,
and MEC in 5G cellular networks: Survey and challenges,’’ IEEE Access,
vol. 9, pp. 37590–37612, 2021.

[18] A. M. Ramly, N. F. Abdullah, and R. Nordin, ‘‘Cross-layer design and
performance analysis for ultra-reliable factory of the future based on 5G
mobile networks,’’ IEEE Access, vol. 9, pp. 68161–68175, 2021.

[19] A. Yousafzai, I. Yaqoob, M. Imran, A. Gani, and R. M. Noor, ‘‘Process
migration-based computational offloading framework for IoT-supported
mobile edge/cloud computing,’’ IEEE Internet Things J., vol. 7, no. 5,
pp. 4171–4182, May 2020.

[20] E. S. Ali, M. K. Hasan, R. Hassan, R. A. Saeed, M. B. Hassan, S. Islam,
N. S. Nafi, and S. Bevinakoppa, ‘‘Machine learning technologies for
secure vehicular communication in internet of vehicles: Recent advances
and applications,’’ Secur. Commun. Netw., vol. 2021, pp. 1–23, Mar. 2021.

[21] G. Fodor, S. Parkvall, S. Sorrentino, P. Wallentin, Q. Lu, and N. Brahmi,
‘‘Device-to-device communications for national security and public
safety,’’ IEEE Access, vol. 2, pp. 1510–1520, 2014.

[22] A. Sanchoyerto, R. Solozabal, B. Blanco, and F. Liberal, ‘‘Analysis of the
impact of the evolution toward 5G architectures on mission critical push-
to-talk services,’’ IEEE Access, vol. 7, pp. 115052–115061, 2019.

[23] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
in A Bradford Book. Cambridge, MA, USA: MIT Press, 2018.

[24] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield ‘‘Live migration of virtual machines,’’ in Proc. Conf. Sym.
Netw. Syst. Design Implement., vol. 2, 2005, pp. 273–286.

[25] C. J. Watkins and P. Dayan, ‘‘Technical note: Q-learning,’’ Mach. Learn.,
vol. 8, nos. 3–4, pp. 279–292, 1992.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 33–529,
2015.

[27] S. Zhang, H. Yao, and S.Whiteson, ‘‘Breaking the deadly triad with a target
network,’’ in Proc. 38th Int. Conf. Mach. Learn., 2021, pp. 12621–12631.

[28] L. Baird, ‘‘Residual algorithms: Reinforcement learning with function
approximation,’’ in Machine Learning Proceedings. A. Prieditis and
S. Russell, Eds. San Francisco, CA, USA: Morgan Kaufmann, 1995,
pp. 30–37.

[29] Z. T. Wang and M. Ueda, ‘‘Convergent and efficient deep Q network
algorithm,’’ 2021, arXiv:2106.15419.

[30] A. Ansari and A. A. Bakar, ‘‘A comparative study of three artificial intel-
ligence techniques: Genetic algorithm, neural network, and fuzzy logic,
on scheduling problem,’’ in Proc. 4th Int. Conf. Artif. Intell. With Appl.
Eng. Technol., Dec. 2014, pp. 31–36.

[31] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[32] R. Islam, P. Henderson,M. Gomrokchi, andD. Precup, ‘‘Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control,’’
2017, arXiv:1708.04133.

[33] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ 2017, arXiv:1709.06560.

[34] C. Colas, O. Sigaud, and P.-Y. Oudeyer, ‘‘How many random seeds?
Statistical power analysis in deep reinforcement learning experiments,’’
2018, arXiv:1806.08295.

[35] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, ‘‘Edge server place-
ment in mobile edge computing,’’ J. Parallel Distrib. Comput., vol. 127,
pp. 160–168, May 2019.

[36] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, ‘‘QoS prediction for
service recommendations in mobile edge computing,’’ J. Parallel Distrib.
Comput., vol. 127, pp. 134–144, May 2019.

[37] G. Dulac-Arnold, D. Mankowitz, and T. Hester, ‘‘Challenges of real-world
reinforcement learning,’’ Mach. Learn., vol. 110, no. 9, pp. 2419–2468,
2021.

[38] A. Gosavi, ‘‘Relative value iteration for average reward semi-Markov con-
trol via simulation,’’ in Proc. Winter Simulations Conf. (WSC), Dec. 2013,
pp. 623–630.

ANUAR OTHMAN (Member, IEEE) received
the B.Sc. degree from the University of Rouen,
France, in 2001, and the M.Sc. degree from the
University of Strathclyde, U.K., in 2008. He is cur-
rently pursuing the Ph.D. degree with the National
University of Malaysia, with a focus on criti-
cal communications services in 5G. He has over
15 years of experience in telecommunications
projects for mobile operators and public safety
agencies. His research interests include conver-

gence of narrowband and broadband radio communications for business and
mission critical markets.

NAZRUL A. NAYAN (Member, IEEE) received
the B.E. degree in information and communica-
tion engineering from The University of Tokyo,
in 1998, and the M.E. degree in electrical and
electronics, and the Ph.D. degree in electronics
and information systems engineering from Gifu
University, Japan, in 2008 and 2011, respectively.
He was a Design Engineer at Hitachi Ltd., Tochigi,
Japan, from 1998 to 2000, a Test Engineer at
Unisem Malaysia Berhad from 2001 to 2003,

a Senior Research and Development Engineer at STATSChipPAC Malaysia,
from 2003 to 2005, and an Academic Researcher at Mimos Berhad, Kuala
Lumpur, in 2012. He was a Postdoctoral Researcher at the Institute of
Biomedical Engineering, University of Oxford, U.K., from 2014 to 2016.
He was a Research Member of common room, Kellogg College, University
of Oxford, from 2015 to 2016. He has published 27 research articles in
international journals and has also presented the papers at 21 international
conferences from 29 proceeding papers that he has published. He has
received several awards, such as the Japan’s Monbukagakusho Scholarship
Awards, from 2005 to 2011, the Student Research Award, IEICE, Tokai
Division, Japan, in 2010, the Academic Excellence Award, Gifu University,
in 2011, and the Excellent Service Award, UKM, in 2014 and 2018.

SITI N. H. S. ABDULLAH received the degree
in computing from the University of Manch-
ester Institute of Science and Technology, U.K.,
the master‘s degree in artificial intelligence from
Universiti Kebangsaan Malaysia, and the Ph.D.
degree in computer vision from the Faculty
of Electrical Engineering, Universiti Teknologi
Malaysia. She was involved in conducting national
and international activities, such as Royal Police
Malaysia, CybersecurityMalaysia, Cyber Security

Academia Malaysia, Federation of International Robot Soccer Association
(FIRA), Asian Foundation, Global Ace Professional Certification Scheme,
MIAMI, MACE and IDB Alumni. She was the Chairperson of the Center for
Cyber Security in from 2017 to 2020. She is the Deputy Dean of Research
and Innovation with the Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia. She has published four books Pattern
Recognition,Computational Intelligence in Data Science Application, Smart
Prediction of Suspect‘s Serial Crime Location, and Optical Script Reader:
Texture Binary Innovation and more than 50 journal articles and 100 confer-
ence papers. Her research interests include digital forensics, pattern recogni-
tion, and computer vision surveillance system.

VOLUME 10, 2022 61079

