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 Electrocardiogram (ECG) is widely used in the hospital emergency rooms for 

detecting vital signs, such as heart rate variability and respiratory rate. 

However, the quality of the ECGs is inconsistent. ECG signals lose 

information because of noise resulting from motion artifacts. To obtain an 

accurate information from ECG, signal quality indexing (SQI) is used where 

acceptable thresholds are set in order to select or eliminate the signals for the 

subsequent information extraction process. A good evaluation of SQI 

depends on the R-peak detection quality. Nevertheless, most R-peak 

detectors in the literature are prone to noise. This paper assessed and 

compared five peak detectors from different resources. The two best peak 

detectors were further tested using MIT-BIH arrhythmia database and then 

used for SQI evaluation. These peak detectors robustly detected the R-peak 

for signals that include noise. Finally, the overall SQI of three patient 

datasets, namely, Fantasia, CapnoBase, and MIMIC-II, was conducted by 

providing the interquartile range (IQR) and median SQI of the signals as the 

outputs. The evaluation results revealed that the R-peak detectors developed 

by Clifford and Behar showed accuracies of 98% and 97%, respectively. By 

introducing SQI and choosing only high-quality ECG signals, more accurate 

vital sign information will be achieved. 
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1. INTRODUCTION 

Electrocardiogram (ECG) reflects the electrical activity of the heart and contains vast diagnostic 

information that can guide clinical decision making [1]. ECG is one of the most indispensable tools in 

medical diagnosis. The ECG and photoplethysmogram (PPG) waveform show similarity in phases when the 

signals are derived into second derivative signals [2]. ECG and PPG have recently attracted increasing 

attention due to their specialty in the medical field, particularly in the extraction of vital signs in relation to 

cardiopathy [3]. Cardiopathy is affecting over 20% people worldwide. Therefore, a universal method for 

detecting these diseases from ECG signals is highly desired [4]. Each ECG pulse comprises five points, 

which are known as P, Q, R, S, and T, as shown in Figure 1. It also consists of PR and ST segments, PR and 

QT intervals, and QRS complex. Automatic analysis of ECG with the use of a computer algorithm is a 

fundamental task in cardiac monitoring, particularly in long-term monitoring, in which a large amount of data 

is recorded [5-7]. QRS complexes are typically narrow and tall, resulting in large areas over the curve around 

these locations. A few algorithms have been developed to detect the onset and duration of QRS complexes 

[8]. Acquired signals are seldom affected by noise and require for advanced filtering techniques [9]. Accurate 
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R-peak detection is an important step in ECG analysis, and various methods have been proposed in the  

past [10]. 

A signal quality index (SQI) algorithm is used to evaluate the overall signal quality of ECG [11]. 

For this purpose, the R-peak detector must be capable of robustly detecting the correct R-peak even in a high-

noise ECG. From the perspective of signal processing, the R-peak is an important aspect of heart rate 

variability (HRV) measurement, respiration rate (RR) extraction, and signal quality indexing (SQI) 

evaluation. Optimal SQI can potentially be used to improve the diagnosis and monitoring of abnormalities, 

such as hypertension [12].  

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) is a public-access ICU 

database that stores information regarding numerous patients admitted to intensive care units (ICUs) in the 

Beth Israel Deaconness Medical Centre in Boston, MA, United States [13, 14]. The original database was 

split into two parts: the MIMIC-II clinical database and the MIMIC-II waveform database. The clinical 

database contains the data on the patient charts (heart rate and blood pressure (bp) every hour, blood 

measurements, etc.). The waveform database contains the raw signals monitored from the patient, such as 

ECG, photoplethysmogram, and RR.  

 

 

 
 

Figure 1. ECG waveform comprises of five points, two segments, two intervals and a complex 

 

 

Capnobase was an initiative of Dr. Walter Karlen and Dr. Mark Ansermino from the Electrical 

Computer Engineering in Medicine, Univ. of British Columbia, Canada in 2009. On 11 February 2015, a new 

revision of this database added the demographic information, such weight, age, and ventilation mode [15]. 

For Fantasia, 20 young (21–34 years old) and 20 elderly (68–85 years old) rigorously screened healthy 

subjects underwent 120 min of continuous supine resting and continuous ECG, and respiration signals were 

collected. In half of each group, the recordings also included an uncalibrated continuous non-invasive blood 

pressure signal. Each subgroup of subjects included equal numbers of men and women. All subjects 

remained in a resting state in sinus rhythm while watching the movie Fantasia (Disney, 1940) to help 

maintain wakefulness. The continuous ECG, respiration, and blood pressure signals were digitized at 250 Hz. 

Each heartbeat was annotated using an automated arrhythmia detection algorithm, and each beat annotation 

was verified by visual inspection. 

The interquartile range (IQR) was used in this study to measure the variability by dividing a dataset 

into quartiles, which are denoted by Q1, Q2, and Q3. In this study, a method of examining the signal quality 

of ECG datasets was investigated. Five R-peak detection algorithms for 12 lead ECG recordings were 

evaluated using MIMIC-II ECG and MIT-BIH arrhythmia database. Then, two peak detectors that exhibited 

the best result for R-peak detection were selected to run SQI for the three patient datasets, namely MIMIC-II, 

Capnobase, and Fantasia. 

 

 

2. RESEARCH METHOD 

Prior to the SQI process, five R-peak detectors were evaluated by applying them to actual ECG 

datasets. The R-peak detectors used in this study were; Behar’s jQRS [16], Qinghua Zhang’s rpeak [17], Pan 

and Tomkins QRSDetector, MATLAB’s findpeak, and Clifford’s [16] rpeakdetect. First, the detected R-peak 

on top of ECG was plotted to ensure that it makes sense across the whole record. The two best detectors were 

used to gauge its accuracy by searching for the R-peak of the MIT-BIH arrhythmia dataset prior to its use in 

the SQI process. The ECG data used for this evaluation were MIMIC-II and Capnobase. The recorded time 
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for each ECG was 8 min. A 10 s window SQI that move every 1 s after each SQI was applied. Thus, 470 

windows were evaluated. Then, the two sets of annotations from the two QRS detectors were transmitted as 

an input to another algorithm. This algorithm provided an output or score SQI in the range of 0–1. In this 

study, an SQI of more than 0.9 was categorized as good signals. The median IQR for 30 s non-overlapped 

window SQI were then obtained to evaluate the qualitative validation of the signal. The median SQI and the 

IQR were measured for MIMIC-II, Capnobase, and Fantasia as the final output to examine the ECG quality. 

The methodology is simplified in Figure 2. 

 

 

 
 

Figure 2. Methodology 

 

 

3. RESULTS AND ANALYSIS 

3.1.  Peak detectors evaluation 

The five peak detectors were evaluated using an ECG signal at lead II of a female patient aged 50 at 

the ICU, recorded for the MIMIC-II project, as shown in Figure 3. An 8-min ECG was analyzed from the 

patient, and the graphs display from 250 s to 300 s of the total ECG. The top graph shows the peak detectors 

developed by Behar, followed by the original MATLAB peak detector, Zhang’s, Pan & Tompkins’s, and 

Clifford’s ECG peak detector results on the bottom graph. The analysis suggests that Behar and Clifford’s 

peak detectors are the most reliable and robust. To confirm this finding, we run another evaluation using 

Capnobase as shown in Figure 4, which confirmed that the R-peaks detected by Behar and Clifford were 

consistent and robust. 
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Figure 3. ECG R-peak detector evaluation using MIMIC-II dataset 

 

 

 
 

Figure 4. ECG R-peak detector evaluation using Capnobase dataset 

 

 

3.2. Presicion using MIT-BIH Arrythmia database 

Behar and Clifford’s peak detectors were used to detect the R-peak of the MIT-BIH arrhythmia 

database as shown in Figure 5. The result showed that when 60 s ECG data were used, the accuracy was 98% 

for Behar’s and 97% for Clifford’s. This data was based on raw and preprocessed ECG signal that include 

artifacts and noise. 

 

 

 
 

Figure 5. ECG R-peak detector evaluation using MIT-BIH Arrythmia dataset 
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3.3. SQI from the input of the two selected peak detectors 

 Figure 6 shows that 655 peaks were detected for both peak detectors during the 6 min of recording. 

Behar and Clifford’s peak detectors were used to confirm the signal quality. Figure 7 shows a very good 

quality signal detected during 70 s of the recorded data. To confirm this finding, SQI was also performed on 

a file of the Fantasia dataset, which is shown in Figure 8 and Figure 9 shows a low quality of signals detected 

during the first 50 s of the recording. 

 

 

 
 

Figure 6. Behar and Clifford peak detectors used for signal quality indexing using MIMIC-II ECG data 

 

 

 
 

Figure 7. SQI of one MIMIC-II data 

  

 

 
 

Figure 8. Behar and Clifford peak detectors used for SQI using Fantasia data 
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Figure 9. SQI of one Fantasia data 

 

 

3.4. Median SQI and IQR measurement 

 Using this technique, all ECG data in three different datasets were evaluated on their SQI. The 

datasets were Fantasia, MIMIC-II, and Capnobase. The median SQI and IQR of each data were recorded. 

 

 

  
  

Figure 10. SQI and IQR of all MIMIC-II patients ECG data 

 

 

 As shown in Figure 10, by setting the good data as having 0.9 SQI and above, we categorized 76% 

out of 944 patient ECG as good. The data also included 93 data that had SQI 0. For the IQR, MIMIC-II had 

932 out of 944 that had less than 0.4 IQR. In. Figure 11, Capnobase ECG quality was good, as 40 out of 43 

patient data had SQI of 1. This finding was also verified by the IQR graph, in which only one dataset had 0.6 

IQR (the largest). Figure 12 shows the result for the Fantasia dataset. The data were relatively good, as 35 out 

of 38 showed a SQI of 0.9 and above. This result was also verified using IQR, where only six patient ECG 

data had IQR of more than 0. The results verify that the use of SQI confers biomedical engineers in using the 

ECG data. 
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Figure 11. SQI and IQR of all Capnobase patients ECG data 

 

 

  
  

Figure 12. SQI and IQR of all Fantasia patients ECG data 

 

 

4. CONCLUSION 

We evaluated five R-peak detectors in this study. The peak detector algorithms constructed by 

Behar and Clifford achieved the two best results. These detectors were then used to run SQI. On the basis of 

the SQI results of each data, the median SQI and the IQR were measured. The proposed method could be 

useful to evaluate ECG signals prior to being sources for RR and HRV extraction. 
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