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 Abnormal vital signs often predict a serious condition of acutely ill hospital 

patients in 24 hours. The notable fluctuations of respiratory rate (RR) are 

highly predictive of deteriorations among the vital signs measured. 

Traditional methods of detecting RR are performed by directly measuring the 

air flow in or out of the lungs or indirectly measuring the changes of the 

chest volume. These methods require the use of cumbersome devices, which 

may interfere with natural breathing, are uncomfortable, have frequently 

moving artifacts, and are extremely expensive. This study aims to estimate 

the RR from electrocardiogram (ECG) and photoplethysmogram (PPG) 

signals, which consist of passive and non-invasive acquisition modules. 

Algorithms have been validated by using PhysioNet’s Multiparameter 

Intelligent Monitoring in Intensive Care II (MIMIC-II)’s patient datasets. RR 

estimation provides the value of mean absolute error (MAE) for ECG as 1.25 

bpm (MIMIC-II) and 1.05 bpm for the acquired data. MAE for PPG is 1.15 

bpm (MIMIC-II) and 0.90 bpm for the acquired data. By using 1-minute 

windows, this method reveals that the filtering method efficiently extracted 

respiratory information from the ECG and PPG signals. Smaller MAE for 

PPG signals results from fewer artifacts due to easy sensor attachment for the 

PPG because PPG recording requires only one-finger pulse oximeter sensor 

placement. However, ECG recording requires at least three electrode 

placements at three positions on the subject’s body surface for a single lead 

(lead II), thereby increasing the artifacts. A reliable technique has been 

proposed for RR estimation.  
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1. INTRODUCTION  

Based on the Strategic Plan of the Ministry of Health of Malaysia for 2016–2020, the increased 

prevalence of infectious and non-infectious diseases implies the government's concern for hospital healthcare 

services and resources [1]. Most high-risk patients suffering from diseases require full monitoring of vital 

signs, such as pulse rate, respiratory rate (RR), blood pressure, and body temperature [2], which are used as 

the main references to the patient's health level [3]. 

Brief changes in the RR is a sensitive marker for health deterioration in patients compared with 

other vital signs [4]. However, less than 50% of RR information is recorded by medical personnel despite the 

presence of severe respiratory illnesses [5]. Besides RR measurement, the respiratory sounds is also an 
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important parameter where Abdul Malik et. al in 2017 [6] have conducted a study to classify normal 

respiratory sounds and crackles respiratory sounds in healthy individuals and lung cancer patients. Another 

parameter such as the cardiorespiratory information can be measured using multiple piezoelectric sensors as 

investigated by Igasaki et al. [7]. 

The existing equipment for RR measurement techniques create noises. An example is the 

spirometer, which measures airflow in and out of the mouth during breathing. It may interfere with the 

natural respiratory process. Similarly, noise-related problems are also encountered by an inductance 

plethysmography (IP), which transmits electrical current between two electrocardiogram (ECG) electrodes 

when the volume of air in the lungs changes. This detector causes discomfort because, it is tied to the 

patient’s chest to record air volume changes [8].  

Information regarding respiratory signal can be found in the cardiovascular physiological signals, 

such as ECG [9], photoplethymogram (PPG) [10],[11] arterial blood pressure [12], and peripheral arterial 

tonometry waves [13]. However, ECG and PPG are the most widely recorded signals from acute patients 

during their stay in hospital or outside of intensive care units (ICUs).  

PPG is a cardiovascular pulse signal that is recorded by a non-invasive pulse oximeter to measure 

the heart rate and oxygen saturation of arterial hemoglobin (SpO2) [14], Pulsatile PPG waveform is 

generated basically due to the blood volume changes in the tissue area involved. The alternating current part 

of PPG is the pulsatile physiological waveform that represents the changes in the blood pressure with each 

heart rate [15]. The light across biological tissues, such as the tip of the fingers, the toe or ear lobes, is 

absorbed by the absorption substances, including the skin, bone, and blood capillaries. Arterial diameters 

increase if blood pressure increases during systole, compared with diastole, to accommodate a large volume 

of blood. The light intensity transmitted through the vessels to the photo detector is constantly fluctuating 

periodically according to the pulsatile blood flow due to aforementioned cardiac cycle [16] This event results 

in the development of heart rate readings. 

The RR signal from the PPG waveform occurs when the chest cavity affects the venous blood flow 

to the heart during the respiratory process, causing blood perfusion fluctuations and impairing the vascular 

peripheral self-control. The fluctuation moves along with the fluctuations that occur due to respiration 

process. Because of this modulation effect, PPG signal contain respiratory information [3] through its 

amplitudes, base line, and pulse width modulation [17]. 

Karlen et al. [18] has combined three RR findings from PPG signals that change the frequency, 

intensity, and amplitude caused by the respiratory process. The developed algorithm can achieve a root mean 

square (RMS) error of 3.0 breaths/min (bpm), compared with referral (actual) RR. Sukor et al. [19] analyzed 

the morphology of the ECG and PPG signals and received a considerable error of 7.23 bpm. Nemati [13] 

combined Kalman filter and the quality of the signal index and obtained an error of 3.02 bpm. Fleming [20] 

analyzed PPG by comparing two techniques of autoregressive methods, namely, digital filters and small 

wave decomposition (wavelet decomposition). However, the study did not provide an estimated RMS error 

value of RR. Wavelet decomposition and power spectral density analysis methods have also been used to 

extract RR and presented 9.5% error rate [21]. 

Therefore, in this study, an algorithm development technique is presented to obtain reliable RR 

estimates from ECG and PPG signals that can reduce the use of bulky medical devices on patient's body. 

ECG data were recorded using a single lead (lead II) represented by a pair of electrodes, and a reference 

electrode. A pulse oximeter placed at the tip of the index finger was used to record the PPG signal. 

Furthermore, MIMIC-II patient data were used for the development of RR extraction algorithms. Signal 

quality index (SQI) is also applied to ensure high-quality ECG and PPG signals are used for the estimation 

process. 

 

 

2. RR ESTIMATION FROM ECG AND PPG SIGNALS 

Two types of dataset were used to determine the estimation of breathing rates. The first dataset was 

provided by the PysioNet archive site that contains 40 patient data from the Multiparameter Intelligent 

Monitoring in Intensive Care II (MIMIC-II) study. The second dataset comprised of 20 data, which were 

recorded and collected using a vital sign acquisition system. The vital data of 20 healthy subjects were 

obtained using the eDecron detector and CMD 50+ pulse oximeter due to its portability and affordability 

[22]. ECG and PPG signals were recorded from 4 males and 16 females, aged 13 to 58 years old, with a 

median age of 26 years. The median for the body mass index of the subjects is 21.0, which ranges from 14.9 

to 32.0. Heart rate and RR parameters were obtained with the median of 73 bpm (61–89 bpm) and 19 bpm 

(14–25 bpm). Throughout the experiment, 17 subjects opted to remain seated, whereas 3 subjects preferred to 

lie down.  
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The development of the ECG and PPG database for the data acquisition system received ethical 

approval from the Research Ethics Secretariat of Universiti Kebangsaan Malaysia Medical Center with 

reference number UKM PPI/111/8/JEP-2018-161. 

Development of the algorithm for RR estimation started with ECG signal, followed by PPG signal. 

The signals underwent a pre-processing phase and SQI evaluation. Next, the signal underwent the RR 

estimating process, with QRS complex tracking for ECG and pulse peak for PPG. The QRS complex 

detector, using Pan and Tompkins method, started under the following conditions: 

 

(sum(abs(ecg-median(ecg))>MIN_AMP)/NB_SAMP)>0.05  

 

where ecg is the ECG raw signal, MIN_AMP is the minimum amplitude in a 10-second window, NB_SAMP 

is the number of sample inputs, that is, 1,250 samples at 125 Hz frequency sampling. 

 

Meanwhile, peak pulse sensor used ‘rpeaks’ algorithm through parametric adjustment method 

described in [23]. The estimated respiratory waves were generated through respiratory-sinus arrhythmia 

(RSA) for ECG and respiratory-induced frequency variations (RIFV) for PPG. Subsequently, RSA and RIFV 

were filtered using band-pass filter of finite impulse response (FIR). Using MATLAB software, the FIR 

equation was as follows: 

 

[b]=fir1(38,[0.1 0.6])        (1) 

 

Where, the FIR filter design used the 38
th

 level in the frequency range between 0.1 and 0.6 Hz. 

 

In this study, referral respiratory signals underwent a pre-processing process to eliminate the noise. 

Fast Fourier transformation (FFT) was performed on the FIR filter wave to determine the estimated RR of the 

ECG and PPG signal, as follows: 

 

Y=fft(X)         (2) 

 

This equation was used to calculate a discrete Fourier transform (DFT) for the value of X by using 

the appropriate Fourier transformation algorithm (FFT). 

Next, the estimated RR and RR of the reference signal were compared statistically to determine the 

probability of accurate estimation. The algorithm in this study was developed using MATLAB. 

 

2.1. Signal Pre-processing 
The ECG and PPG waves went through signal pre-processing to eliminate high and low frequency 

noise by using filtering algorithm. Baseline wander is a low-frequency noise absorbed by ECG and PPG 

signals that is usually caused by respiratory, body movements, and an inadequate electrode position [24]. 

This noise results in confusion and annotation of signage signal characteristics [25], such as the ST segment 

on the PQRST morphology of the ECG signal, which has a low-frequency value [26]. This baseline 

frequency component is usually below 0.5 Hz, but during stress tests, this frequency limit was higher. To 

overcome the problem of baseline wander in the signal, a high pass filter with a cut frequency of 0.5 Hz was 

used. Filters with linear phase from infinite pulse response (FIR) were required to remove this baseline, 

thereby avoiding phase distortion when changing the wave feature in the heart cycle. 

Power line interruptions for a frequency of 50 or 60 Hz formed the amplified sinus noise on the 

ECG and PPG signals. The frequency of these power lines varied according to places; for instance, 50 Hz 

power lines are used in Europe and Asia, whereas 60 Hz power lines are used in North America [27]. Among 

the causes for this disruption is electromagnetic disturbances, pervasive effects by rerouting currents due to 

loop in wires, improper grounding devices, and unclean ECG electrodes. Additionally, electrical equipment, 

such as air conditioning, elevators and X-ray units, attracts high power line currents capable of affecting the 

50 Hz signal on the ECG circuit input. To obtain the right pulse detection, we used filters to remove high 

frequencies. In this study, the infinite impulse response (IIR) notch filter is used to eliminate 50 +/- 0.2 Hz. 

High-frequency noise was overcome by using Savitzky–Golay digital filtering to smooth out the 

waves, especially if distortion gestures occur. This generally moving average filter help in keeping the peak 

and gap effectively. 

 

2.2. SQI 

SQI is one of the artifact tracking algorithms that assess the quality of physiological data [28]. 

Through this study, the raw signal underwent ECG morphology observations in a 10-second window of 
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1,250 sample data. The method of obtaining SQI has been adopted from Behar [29] and Johnson [30] with 

the following steps. First, QRS annotations for ECG or peak signals for PPG are obtained using Behar [29] 

and Johnson [30] peak detectors. Second, using signal samples, the QRS and the peaks are marked to ensure 

that the mark is correct at the top. Both sets of annotations are inputs to the SQI algorithm, which provides 

signaling index and index values depending on the level of the peak detection equality for both detectors. If 

the peaks detected by the two sensors are equal, the SQI value is 1 for the signal in the 10-second window. If 

both detectors cannot agree with each other on the detected peaks, the value is less than 1. For this study, 

only windows that have a value of 0.9 and above were gathered for RR estimation. According to Sukor [19], 

the quality of a signal depends on the amplitude, width, and ECG and PPG waveforms. Initially, we 

hypothesized that this morphological detection could differentiate between the actual ECG and PPG waves 

with artificial disturbances. 

 

2.3. Respiratory Signal Extraction 

RSA is the correlation between variations of the heart rate cycle and the respiratory system. Heart 

rate increased when the person breathes in and decreased when breathing out. This method started by 

detecting R peak to obtain R-R interval in time series. Then, the R-R interval was used as the value for the 

amplitude of the new waveform. To perform FFT process in the next stage, the wave formed by RSA was 

resampled at a frequency of 4 Hz using spline interpolation. 

 

2.4. RR Estimation from Respiratory Signals 

Hence, the estimated respiratory wave obtained from the final process in the band-pass filter was 

determined by the RR. By using the developed algorithm, each of the ECG and PPG peaks was annotated to 

calculate the RR. 

 

2.5. Statistical Analysis 
The estimated RR derived from the ECG and PPG signal derivation methods was produced in the 

form of a sine wave. For confirmation, the RR signals were also recorded as referral respiratory signals at the 

same time. Referral respiratory signals went through the process of preparing and filtering pathways to obtain 

referral RR. The method used in determining the RR estimation from the ECG signal was assessed by 

determining the mean absolute error (MAE) in bpm. MAE was calculated, as described in Equation 3: 

 

𝐸𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂

𝑖
 −  𝑦

𝑟𝑢𝑗,𝑖
|𝑛

1=1        (3) 

 

where n is the number of data windows used, and ȳi is an estimate of RR that refers to the RR reference for 

window i. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Signal Pre-processiong 

Figure 1(a) shows the raw ECG wave obtained from the MIMIC-II database. The signal processing 

began with the removal of baseline wander. Figure 1(b) shows that the baseline at low frequency was 

eliminated using the algorithm. Furthermore, this process proceeded with the removal of a 50 Hz power line 

disturbance, as shown in Figure 1(c). For MIMIC-II data, this power line disturbance was relatively minimal, 

which was likely due to the MIMIC-II data acquisition system that automatically eliminated this noise 

element. The next filtering, as depicted in Figure 1(d), eliminated the high frequency by applying the 

Savitzky–Golay filter. As depicted in Figure 2, the power line interference was clearly visible for the ECG 

data that were obtained using the data acquisition system. In the single-sided spectrum, the peak was at 52 

and 59 Hz, thereby clearly demonstrating that electric power line noise in Malaysia exists in that frequency 

range. Figure 3 shows the results of the signal processing for the MIMIC-II database. The same method for 

ECG preprocessing was applied to PPG signal processing, which was completed by applying the Savitzky–

Golay filter, as shown in Figure 3(d). 
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(a) raw ECG signal (b) after removal of baseline wander 

  
  

(c) after removal of power line interference (d) after signal smoothening by Savitzky-Golay filter 

Figure 1. The ECG signal preprocessing showing (a) raw signal (b) removal of baseline wander (c) removal 

of power line interference (d) after signal smoothening by Savitzky-Golay filter, using MIMIC-II dataset 
 
 

 
 

Figure 2. Power line interference at 52 Hz and 59 Hz. Data source from vital signs acquisition system. 
 

 

  
  

(a) raw PPG signal (b) after removal of baseline wander 

  
  

(c) after removal of power line interference (d) after signal smoothening by Savitzky-Golay filter 

Figure 3. PPG signal preprocessing showing (a) raw PPG signal (b) after removal of base line wander (c) 

after removal of power line interference and (d) after signal smoothening by Savitzky-Golay filter, using the 

MIMIC-II dataset 
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3.2. SQI  

Figure 4 shows the ECG signal quality test with pulse peak tracking using two different peak 

detectors, namely, Behar [29] for QRS1 and Johnson [30] for QRS2. High-quality signal issues in 10-second 

window are shown for (a) QRS1 ('*') and (b) QRS2 (“o”); meanwhile, (c) SQI is provided after comparing 

QRS1 and QRS2, achieving good quality (1) and low quality (less than 1 at t=10 s). The data source is the 

MIMIC-II dataset. Figure 5(a) shows the PPG raw signal through the SQI process to determine the good 

quality (blue) and low quality (red). Figure 5(b) illustrated the assessment of the quality signal: good (1) and 

low quality (0 or less than 1). The database source also used the MIMIC-II data set. 
 

 

 

 

  

Figure 4. Determination of SQI for MIMIC-II 

dataset ECG 
Figure 5. Determination of PPG SQI or MIMIC-II 

 

 

3.4. Respiratory Signal Extraction 

Figure 6 illustrates the breathing process of respiratory waves from ECG. The peak R detection of 

the raw ECG wave was shown in Figure 6(a). For diagram 6(b), the fiducial point of the distance difference 

between the adjacent R values was used. It was similar to (c) when defined as an ingestion of the respiratory 

sinus arrhythmia signal induced by frequency variation. The database source used was the MIMIC-II data set. 

Figure 7 shows the respiratory signal induced by frequency variation or fiducial point for the distance 

between the pulse peaks of PPG. The data source used was the set of PPG MIMIC-II data. 

 

 

  
  

Figure 6. The ECG waveform for (a) the peak 

detection of R (b) varies between the peak R-R 

values (c) of the respiratory-arrhythmic artery. 

MIMIC-II dataset source 

Figure 7. PPG signal showing (a) signal pulse 

detection, (b) difference between pulse peak, and (c) 

respiratory frequency arrhythmia variation. MIMIC-

II dataset source 

 

 

3.5. RR Estimation from Respiratory Signal 
Furthermore, the estimated respiratory signal obtained from the final process in the band-pass filter 

is determined by the RR value, as shown in Figure 8. Each peak of the ECG and PPG issuance estimates was 
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indicated for RR calculation. The results via ECG and PPG signal evaluations were compared with the 

reference respiratory signals, which were included together in the PhysioNet MIMIC-II archive. These 

comparative results were statistically analyzed to obtain the MAE. 
 

 

 
 

Figure 8. A total of 17 breaths per minute, marked with red “o”, were obtained from the breathing wave 

signal within 60 seconds. MIMIC-II dataset source 

 

 

3.6. Statistical Analysis 

Based on Table 1, the MAE indicated that the estimation of the ECG and PPG respiration rates for 

the MIMIC-II database was 1.25 and 1.15, whereas those for the vital sign acquisition system were 1.05 and 

0.90, respectively. The algorithm was used well in PPG signals versus ECG because the angle of respiratory 

modulation for each signal is different on both datasets. RR estimation from ECG and PPG signals were 

performed using 40 subjects for the MIMIC-II database and 20 subjects for the database acquisition system. 

The signal is processed using a 1-minute window in the time domain to issue estimates of RR. Respiratory 

sinus arrhythmic method and frequency-induced frequency variation show favorable results in determining 

the estimated respiratory waves. The obtained waveform is determined by the RR to be compared with the 

actual RR. 
 
 

Table 1. Results of MAE for ECG and PPG Signals 

Estimated 

respiratory rate 

MAE for ECG derived 

(breath per minute) 

MAE for PPG 

derived (breath 
per minute) 

MIMIC-II data 1.25 1.15 

Acquired data 1.05 0.90 
Nemati [10]  3.02 

Karlen [14] 7.23 7.00 

Sukor [15]  3.00 

 

 

4. CONCLUSION 
RR from the ECG and PPG signals were estimated using the signal processing method, where the 

peak R-R values for ECG and pulse peaks of PPG were collected to form respiratory sinus waves. After 

determining the estimated RR, the obtained MAEs of ECG signal were 1.25 (MIMIC-II) and 1.05 bpm 

(acquisition system), and 1.15 (MIMIC-II) and 0.90 bpm (acquisition system) for PPG signal. In identifying 

the estimate of RR, the measurement system factor implied that data on acquisition system, age factor, and 

patient's condition, should also be analyzed. For example, in MIMIC-II database, the majority of the subjects 

were elderly patients in the ICU. The subjects were admitted and included in the database because of 

respiratory problem. With the determination of RR estimation through combined physiological ECG and 

PPG signals, subjects recruited for the database acquisition system experienced enhanced comfort, flexibility, 

and ease in evaluating their health level under the supervision of a medical officer or guardian. 
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