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Abstract This paper investigates the design approaches of low-power adiabatic logic gates in terms of energy dis-
sipation associated with the input transition. A computer simulation using SPICE is carried out on several inverter

circuits implemented using 0.18 um CMOS technology. Driving pulse with the height equal to V4 is supplied to

the logic gates. The dissipation characteristics are also compared at the different load capacitance values.
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1. Introduction

CMOS has been the technology of choice for implement-
ing low-power digital systems. It provides high density and
high performance to the integrated circuits. As the density
of an integrated circuit increases, the power consumption in-
creases and it is difficult to control the temperature. A high
performance, light weight, and long operation time required
by mobile devices are just the contradictory characteristics.
Adiabatic circuits, which are able to dissipate less energy
than the fundamental limit of static CMOS, are promising
candidates for low-power circuits in the frequency range in
which signals are digitally processed. In recent years, stud-
ies on adiabatic computing have been utilized for low-power
systems and several adiabatic logic families have been pro-
posed [1]-[13]. O O

In this paper we examine the functional and energy dissipa-

tion of adiabatic circuits using computer simulation whereas

low-power, adiabatic logic, load capacitance

in [1], only functional simulations have been carried out.
Then, we present a comparative study where the energy dis-
sipation of the adiabatic circuits found in the literature are
compared to that of conventional static CMOS circuit. We
also simulate the effects of the load capacitance to the energy
dissipation. We conclude with a discussion of directions for
further research in adiabatic design.

1.1 Adiabatic Logic Circuit Group

The adiabatic circuits are classified into asymptotically
adiabatic and quasi-adiabatic circuit based on whether full
energy recovery or partial energy recovery is obtained.

1.1.1 Asymptotically Adiabatic Logic

Asymptotically adiabatic logic comprised of circuits in
which dissipation results solely from finite rate of change
of driving voltage and can be decreased to any desired lev-
els. It is represented by 2n2p-2n logic [2], 1nlp logic that is
using the split-level driving pulses [3] and split-level charge-

recovery logic [4].



1.1.2 Quasi-Adiabatic Logic

Quasi-adiabatic logic[1] is comprised of circuits which
dissipation can be reduced appreciably by lowering the
rate of change of driving voltage. It is further divided
into another two groups, which is the static approach and
the dynamic approach. The static is represented by 1n-
1p[5] and 2n-2n2p quasi-adiabatic logic [6], Adiabatic Dy-
namic Logic (ADL) [7] [8], Efficient Charge-Recovery Logic
(ECRL) [9], Adiabatic Dynamic CMOS Logic (ADCL) [10],
2-Phase Adiabatic Dynamic CMOS Logic (2PADCL) [11]
and 2n-2n2D [12]. The dynamic approach is represented by

Hot-Clock nMOS (HCnMOS) logic [13].
2. Simulation and Results

2.1 Conditions

The paper starts by examining the functional and energy
dissipation of a simple logic gate, an inverter. The following
test methodology was utilized. The simulations using SPICE
are carried out for all the inverters in this paper. The W/L
of nMOS and pMOS logic gates used is 0.18 pm / 0.6 pm.
Circuits are connected to the input signal X, according to the
layouts. A capacitive load, Cf, of 0.01 pF is placed at each
output node Y. The output loads are driven by clocked sig-
nals ¢, which moves energy into and out of each gate. Using
trapezoidal clocked driving voltage with 1.8 V peak-to-peak,
the output waveforms at 50 MHz frequency are shown in Fig.
1 — Fig. 12, where the input signals are CMOS-compatible
rectangular pulses.

The top graph shows the input signals. The second graph
shows the pulse driving voltage. The third graph shows the
output waveforms of a correctly functioning inverter and the
bottom graph shows the energy dissipation of the logic gates
which was simulated with the SPICE software. It can also
be calculated by integrating the voltage and current product

value as follows:

T, [ n
= [ (St ) a )
0 i=1

where T is the period of the primary input signal, V}, is the
power supply voltage, I, is the power supply current and ¢
is the number of power supply [11].

2.2 Circuits comparison

Table 1 lists the features of all logics in the review for
comparison. In this preliminary results, ADL gives the low-
est value of dissipated energy per cycle while 2n-2n2p quasi
adiabatic shows the highest. 8 out of 11 adiabatic circuits
show a lower energy dissipation compared to conventional
static CMOS by reducing it from 98% to 17%.
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2.3 Energy dissipation at different load capaci-
tance

The simulation result on the energy dissipation at different

load capacitance, Cf, is shown in Fig. 13. As expected, all

the circuits, except 2PADCL, show an increase of dissipated

9
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Fig.4 Split level charge-recovery logic inverter circuit diagram

and waveforms

energy when changing the load capacitor to a higher value.
3. Discussion

Analysis of the adiabatic circuits using SPICE shows that
the energy dissipation per cycle can be calculated and there-
fore is convenient for futher analysis and design. In this sim-

ulation result, ADL shows the lowest energy dissipation as
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Fig.5 1n-1p quasi-adiabatic logic inverter circuit diagram and

waveforms
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Fig.6 2n-2n2p quasi-adiabatic logic inverter circuit diagram and

waveforms

an inverter. However, since ADL which uses 4-phase driving
pulse, whereas 2n-2n2D and ADCL, both uses only 1-phase
driving pulse voltage is better. ADCL, which uses 4 gates in-
stead of 6 gates used in the 2n-2n2D is the most suitable from
this simulation results for an adiabatic inverter logic circuit.

From table 1, diode based adiabatic inverters demonstrate a
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forms
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Fig.8 Adiabatic Dynamic logic (ADL) inverter circuit diagram

and waveforms

good result which reduced 98% to 77% of the conventional
CMOS logic inverter energy dissipation. Diodes in the adi-
abatic circuit are used for charging and recycling the charge

from the output. Load capacitance which is used as the data
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holder needs to be designed precisely considering the time
constant that affect the output signal and also the amount

of information to be stored. Unlike other circuits, 2PADCL
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Fig.11 Two-phase drive adiabatic dynamic CMOS logic

(2PADCL) circuit diagram and waveforms
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Fig.12 2n-2n2D circuit diagram and waveforms

shows a decrease in energy dissipation when the load capac-
itance increased. If this is true, this circuit has a higher

possibility to be further studied.

4. Conclusion

We have done simulations to find out the functional and
energy dissipation characteristic of each adiabatic logic cir-
cuits. The SPICE simulations using trapezoidal power clock
prove that the designed circuits have the correct logic func-
tion and considerable energy saving. The design principle
can also be used for designing more complicated adiabatic
CMOS circuits. We conclude that most of the proposed cir-
cuits have lower energy dissipation compared to conventional
CMOS logic.
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Table 1 Comparison of Energy Dissipation

Adiabatic Logic Energy(pJ/cycle) Gates Driving Pulse

ADL 0.035 4 4
2n-2n2D 0.095 6 1
ADCL 0.133 4 1
1In-1p SLCR 0.34 4 1
HCnMOS 0.60 5 2
2PADCL 0.77 4 2
1n-1p SLP 0.86 2 2
In-1p quasi 2.04 2 1
CMOS 3.33 2 1
2n2p-2n 3.45 6 1
ECRL 3.61 4 1
2n-2n2p quasi 5.69 6 1
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