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Abstract
The paper presents a new quasi energy recovery logic family

that uses two complementary split-level sinusoidal power supply
clock for digital low power applications such as sensors. The pro-
posed two-phase adiabatic static CMOS logic circuit (2PASCL)
is using the principle of adiabatic switching. It has switching
activity that is lower than dynamic logic and can be directly
derived from static CMOS circuits. We have done a SPICE
simulation on the 2PASCL logic gates implemented using 0.18
µm CMOS technology. Driving pulse with the height equal to
Vdd is supplied to the gates. For an inverter and four-inverter
chain, it shows that 2PASCL can save 82.6% and 56.9% of en-
ergy respectively over static CMOS logic at transition frequency
of 100MHz.

1 Introduction
In the previous simulation, we redesign the exclusive-

OR(XOR) of 2PASCL which consist of 15 transistors
including the inverters and diodes and compared with
exclusive-OR CMOS which consist only 6 transistors.
Then, we again combine it with the NAND circuit to
create full adder (FA) combination circuit. Compari-
son with CMOS FA in term of energy dissipation is car-
ried out. 1-bit full adder of 2PASCL shows 21.7% lower
energy dissipation at input frequency of 16.7 MHz com-
pared with static CMOS. Next, we introduce the 4-bit
ripple carry adder (RCA) of 2PASCL by showing the
output waveforms.

In this paper, we select the design of XOR of
2PASCL which shows the lowest energy dissipation
performance. Then, we demonstrate the result of FA
of 2PASCL and compared with static CMOS. Then,
we arrange 4 FAs to create 4-bit ripple carry adder
(RCA). The output results and the comparison with
static CMOS at transition frequencies of 10 to 100 MHz
is carried out.

2 Simulation and results
By using split level driving voltage sinusoidal rang-

ing from 0 to 1.8V, simulations of new exclusive-OR
2PASCL is carried out. We simulate the circuit by
changing the location of the diode used to recycle the
charges. We also connect the inverters nMOS to the
diodes. The lowest energy dissipation provided from
the circuit which schematic is in Fig. 2. Next, we sim-
ulate the XOR of CMOS shown in Fig. 3 for adiabatic
switching by adding the split level sinusoidal driving
voltage and diodes to recycle the charges. However,
the circuit does not show an adiabatic operation and
the energy dissipation is high. Therefore, schematic
in Fig. 3 is only used for static CMOS XOR. Bulks
are connected to ϕ and ϕ. The circuit condition is as
shown in Table 1.

By using this new schematic, full adder (schematic as

in Fig. 1), which consist of exclusive-OR and NAND
logics, is simulated for 2PASCL and CMOS. The re-
sults for full adder (circuit layout as in Fig. 8) are
shown in Fig. 4 and Fig. 5. 4 FAs are used to sim-
ulate ripple carry adder which layout of the 2PASCl
version is as shown in Fig. 10. The results for rip-
ple carry adder are shown in Fig. 6 and Fig. 7 for
CMOS. The comparison of the energy dissipation for
the transition frequency of 10 MHz with conventional
static CMOS logic with Vdd of 1.8V is shown in Ta-
ble 2. From the results, 2PASCL with split level sinu-
soidal clocking voltage gives a significant lower energy
dissipation compared to conventional static CMOS for
4-bit ripple carry adder even though higher for single
full adder (FA). 2PASCL ripple carry adder (RCA) also
shown a significant lower energy dissipation when tran-
sition frequency simulated from 10 to 100 MHz (Fig.
9).

Table 1 Circuit data for sinusoidal and static CMOS
comparison

Driving power voltage 0–1.8V
Split level 0–0.9V, 0.9–1.8V
Freq, (input: driving voltage) 1:4
Diodes W/L : 0.6µm/0.18µm
nMOS, pMOS W/L : 0.6µm/0.18µm
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Fig. 1 Full adder.

Table 2 Energy dissipation per cycle comparison

CMOS [µW] 2PASCL[µW] Diff [%]
FA (@ 10 MHz) 0.917 2.207 144.68
RCA (@ 10 MHz) 98.211 22.217 -77.38
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Fig. 2 Schematic for exclusive-OR of 2PASCL.
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Fig. 3 Schematic for exclusive-OR of CMOS.
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Fig. 4 Output waveforms for 1-bit full adder of
2PASCL from the simulation result.

3 Conclusion
In this simulation, 4-bit ripple carry adder (RCA)

of 2PASCL shows an average of 71.5% lower energy
dissipation at input frequency between 10 to 100 MHz
compared to static CMOS. However further simulation
need to be done to magnify the output waveforms for
HIGH and LOW signals.
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Fig. 5 Output waveforms for 1-bit full adder of CMOS
from the simulation result.
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Fig. 6 Output waveforms for 4-bit ripple carry adder
of 2PASCL from the simulation result.
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Fig. 7 Output waveforms for 4-bit ripple carry adder
of CMOS from the simulation result.
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Fig. 8 Schematic of 1-bit FA of 2PASCL.
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Fig. 9 Energy dissipation comparison with different
transition frequency for 4-bit RCA.
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Fig. 10 Schematic of 4-bit RCA of 2PASCL


