Two Phase Clocked Adiabatic Static Logic Circuit: A Proposal for Digital Low Power Applications

Nazrul Anuar1 Yasuhiro Takahashi2 Toshikazu Sekine2

Graduate School of Eng., Gifu University1 Faculty of Eng., Gifu University2

Abstract

This paper proposes a new quasi adiabatic logic family that uses two complementary pulsed supply clock for digital low power applications such as sensors. The proposed two-phase adiabatic static CMOS logic circuit (2PASCL) has switching activity that is lower than dynamic logic and can be directly derived from static CMOS circuits. We have done a SPICE simulation on the chain of four 2PASCL inverters implemented using 0.18 µm CMOS technology. Driving pulse with the height equal to Vdd is supplied to the gates. The results show that 2PASCL can save a maximum of 63.3% of power dissipation over static CMOS logic at transition frequencies of 50MHz to 100MHz.

Conventional CMOS vs. 2PASCL

When a conventional CMOS which consists of the pull-up and pull down networks connected to a load capacitance CL is set into a logical ‘1’ state, an energy of $E_{applied} = C_L V_{DD}^2$ is applied to the load [1]. Energy stored is half of the energy supplied, therefore the total dissipation as heat during charging and discharging is the same as $E_{total} = C_L V_{DD}^2$. Whereas energy dissipation in the channel resistance R is given as $E_{diss} = (\frac{C_L V_{DD}}{R})^2$. For adiabatic charging, when ΔT, which means the time for the driving voltage to change from 0V to Vdd is long, in theory, the energy dissipation is nearly zero.

Fig. 1 2PASCL inverter circuit.

Figure 1 shows an inverter circuit of 2PASCL. The configuration of diodes using pMOS and nMOS are used to recycle the charge from the output. When the input, X is Hi, as ϕ swing up and $\overline{\phi}$ swing down, discharging via nMOS and D2 resulting the output logical state as ‘0’ which is also known as ‘evaluate’ mode [2]. Next, as ϕ swing down and $\overline{\phi}$ swing up, it remains ‘0’ where the circuit is in ‘hold’ mode. When the input is Low, and ϕ is swing up the circuit is in the ‘charging’ mode where C_L is charged through pMOS transistor. Discharging through D1 starts when ϕ swing down. The ‘hold’ mode reduces the transition activity which decrease the energy dissipation.

Simulation and results

The simulation of chain 2PASCL inverter circuit as in schematic diagram of Fig. 2 has been done. Its function is evaluated using the output waveforms graph. At input frequency of 1 to 100MHz, a power dissipation per cycle comparison to static CMOS chain inverter is as demonstrated in Fig. 3. Lower clock voltage frequency gives a lower power dissipation, P. P increases with the increasing transition frequency, f. From 10 to 100MHz, 2PASCL at 125MHz clocking voltage shows a lower result compared to CMOS logic.

Fig. 2 2PASCL chain inverter circuit and simulation results.

Fig. 3 Power dissipation at different transition frequency.

Conclusion

In this paper a two-phase adiabatic static logic (2PASCL) circuit has been proposed. The functional in four chain inverters has been confirmed and the power dissipation per cycle is 63.3% lower than conventional static CMOS logic.

References